COMPARISONS OF

STANDARDS OF LENGTH

COMPARISONS

Of Tine

STANDARDS OF LENGTH

OF
ENGLAND, FRANCE, BELGIUM, PRUSSIA, RUSSIA, INDIA, AUSTRALIA,
made AT The

ORDNANCE SURVEY OFFICE, SOUTHAMPTON,

BY
CAPTAIN A. R. CLARKE, R.E., F.R.S.,

UNDER THE LIRECEION OF
COLONEL SIR HENRY JAMES, R.E., F.R.S, \& COR: MLM: OF THE ROYAL GEOGRAPHICAL SOCIETY OF BERLIN, DIKECTOR OF THE OLDNANCE SUIVVEY.

LONDON:
PRINTED BY GEORGE EDWARD EYRE AND WILLIAM SPO'T'IISWOODE, PRINTERS TO THE QUEEN'S most excellent majesty.

FOR HER MAJESTY'S STATIONERY OFFICE.

CONTENTS.

Preface PageSectionI. Doscription of the Comparing Apparatus, and of certain Standard Bars1
II. On the Sources of Error and the Methods of Comparing 16
III. On the Changes of Form of a bar of metal considered as an elastic body 21
IV. Determination of the Errors of Division of the Standard Foot 42
V. Comparison of the Foot with the Yard $\mathbf{Y}_{\text {s }}$ 73
VI. Determination of the Absolute Expansions of two $\mathbf{1 0}$-feet $\mathrm{Bars} \mathrm{Ol}_{1}$ and Ol_{1} 78
VII. Determination of the length of the Ordnance Survey 10 feet Standard O 81
VIII. Determination of the length of the Ordnance Toise 96
IX. Determination of the length of the Ordnance Metre 105
X. On the mode of Support of the Prussian and Belgian Toisez 111
XI. Determination of the length of the Prussian Toise 125
XII. Determination of the lengll of the Belgian Toise 139
XIII. Comparisons of Standard Yards 151
XIV. Determination of the length of the Royal Society's Platinum Metre à traits 163
XV. Australidn $\mathbf{1 0}$-feet Standards 175
XVI. Determination of the Absolute Expansions of the Indian 10 feet Standords 180
XVII. Re-determination of the Absolute Expansions of the bars OI, and OI: 221
XVIII. Determination of the length of the Indian Standard i_{s} 234
XIX. Determination of the length of the Indian Standard Foot and its Sub-divisious 242
XX. Comparisons of the Old and New Indian Standards and \boldsymbol{O}_{1} 250
XXI. Determination of the Iength of the Russian Double-Toise P 256
XXII. Final Results 268
Appendix 281

ERRATA.

Page,	Line.	For	Read
		$2 b b^{\prime} \quad a$	$2 b b^{\prime}-\frac{a}{4}$
24	12	$\overline{b+b^{\prime}} \quad \overline{4}$	$\overline{b+b^{\prime}}-\frac{-}{4}$
		$b^{\prime}-b x^{2} \quad x^{3}$	$b^{\prime}-b x^{2}-\frac{x^{*}}{}$
24	12	$\overline{b^{\prime}+b} \overline{2} \quad \overline{3 a}$	$\overline{b^{t}+b} \overline{2}-\overline{3 a}$
24	17	\underline{i}	\underline{i}
2		\boldsymbol{u}	μ
24	18	$\frac{\delta}{u}+\frac{i}{u} x$	$\frac{\delta}{\mu}+\frac{i}{\mu} x$
25	lest	$\frac{d y^{2}}{x^{2}} d x$	$\frac{d y^{2}}{d x^{2}} d x$
64	16	first	just.
138	16	(2.1315208 $\pm \ldots .$.	$(2 \cdot 13152080 \pm \ldots.) \mathrm{Y}_{5}$;
143	last	$\frac{4 \cdot 74}{3600}$	$\frac{474}{3600}$
145	28	partical	particle.
162	20	$2 \mathrm{Y}_{67}$	Y_{G}
192	26	to be nearly	to be as nemly.

PREFACE.

The Figure and Dimensions of the Earth have been determined in this country by the labors of G. B. Airy, Esq., Astronomer Royal of England,* but, on the completion of the Principal Triangulation of the United Kingdom, we gave the Figure and Dimensions as derived from our own geodetic operations, and also the result derived from the combination of all the separate measurements of Arcs of Meridians in Peru, France, Prussia, Russia, Cape of Good Hope, India, and in the United Kingdom. \dagger From which we derived the following dimensious:-

Equatorial semi-diameter	\ldots	\ldots	\ldots	\ldots	\ldots	20926330		
Polar semi-diameter	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	20855240	
Ellipticity	\ldots							
$-\frac{1}{294 \cdot 36}$								

We also published in 1858 Geodetical Tables based on the above elements of the Figure of the Earth, but these numbers being dependent upon old comparisons, must now be slightly modified in conformity to the results of the comparisons now made.

In computing the Figures of the Meridians and of the Equator for the several measured Arcs of Meridian, it is found that the equator is slightly elliptical, having the longer diameter of the ellipse in $15^{\circ} \cdot 34^{\prime}$ east longitude and the shorter in $105^{\circ} \cdot 34^{\prime}$ east longitude. In the Eastern hemisphere the meridian of $15^{\circ} \cdot 34^{\prime}$ passes through Spitzbergen, a little to the west of Vienna, through the Straits of Messina, through Lake Chad in North Africa, and along the west coast of South Africa, nearly corresponding to the meridian which passes over the greatest quantity of land in that hemisphere. In the western hemisphere this meridian passes through Bering's Straits, and through the centre of the Pacific Ocean, nearly corresponding to the meridian which passes over the greatest quantity of water in that hemisphere.

The meridian of $105^{\circ} \cdot 34^{\prime}$ passes near North East Cape in the Arctic Sea, through Tonquin and the Straits of Sunda, and corresponds nearly to the meridian which passes over the greatest quantity of land in Asia, and in the western hemisphere it passes through

[^0]Smith's Sound in Beriug's Straits, near Montreal, near New York, between Cuba and St. Domingo and close along the western coast of South America, corresponding nearly to the meridian passing over the greatest amount of land in the western hemisphere.

These meridians therefore correspond with the most remarkable physical features of the globe.

The longest semi-diameter of the equatorial ellipse is... ...and the shortest			$\begin{gathered} \text { Feet. } \\ 20926350 \end{gathered}$
			20919972
giving an ellipticity of the equator equal to	\ldots	$\frac{1}{3269 \cdot 5}$
The polar semi-diameter is equal to			20853429

$\begin{array}{llll}\text { The maximum and minimum polar compressions are } \ldots & \cdots & \begin{array}{ll}1 \\ 285 \cdot 97\end{array} \text { and } \frac{1}{313 \cdot 38}\end{array}$
Or a mean compression of very closely $\quad . . \quad$......\quad... $\frac{1}{300}$
The Specific Gravity of the Earth was determined by Dr. Maskelyne in 1774 from observations on the attraction of the mountain Schehalien in Scotland, and was found to be 4.90 , and in 1855 I had observations made at Arthur's Seat near Edinburgh, and the Specific Gravity of the Earth obtained from the attraction of that mountain was found to be 5.316.*

The Principal Triangulation of the United Kingdom was finished in 1851, and the Triangulations of France, Belgium, Prussia, and Russia were so far advanced in 1860, that, if connected, we should have a continuous Triangulation from the Island of Valentia on the south-west extremity of Ireland, in north latitude $51^{\circ} 55^{\prime} 20^{\prime \prime}$ and longitude $10^{\circ} 20^{\prime} 40^{\prime \prime}$ west of Greenwich, to Orsk on the River Ural in Russia.

It was, therefore, possible to measure the length of an arc of parallel in latitude 52° of about 75°, and to determine, by the assistance of the electric telegraph, the exact difference of longitude between the extremities of this are, and thus obtain a crucial test of the accuracy of the Figure and Dimensions of the Earth as derived from the Measurement of Ares of Meridian, or the data for modifying the results previously arrived at.

The Russian Government, therefore, at the instance of M. Otto Struve, Imperial Astronomer of Russia, invited in 1860 the co-operation of the Governments of Prussia, Belgiam, France, and England to effect this most important object, and to their great honor they all consented, and granted the necessary funds for the execution of the work.

The portion of the work which was assigned to me was the connection of the Triangulation of England with that of France and Belgium, and I published the results of this operation in I862.* But this work has been done in duplicate, for when application was made to the French Government to permit the necessary observations to be made in France, they not only consented to allow this, but at the same time volunteered to join in the labor and expense of the work itself.

It would obviously have been wrong to mix up observations made with different kinds of instruments, and on different principles, and, therefore, it was agreed that the work should in fact be made in duplicate, both the French and English geometricians using the exact same stations.

The results obtained by the French geometricians is published in the Supplement to Vol. IX. of the "Memorial du Dépôt Général de la Guerre," 1865, and the agreement with the results obtained by the English is truly surprising.

But however accurately the trigonometrical observations might be performed, it is obvious that without a knowledge of the exact relative lengths of the Standards used as the units of measure in the triangulation of the several countries, it would be impossible accurately to express the length of the arc of parallel in terms of any one of the Stanuards.

It was, therefore, necessary that a comparison of the Standards of Length should be made, and as we had a building and apparatus expressly erected for the purpose of comparing Standards at this office, the English Government, on my recommendation, invited the Governments of the several countries named to send their Standards here, and we have bad the following compared with the greatest accuracy :-

1. Russian Standard double Toise \mathbf{P}.
2. Prussian Standard Toise.
3. Belgian Standard Toise.
4. Platinum Metre of the Royal Society, compared with the Standard Metre of France, by M. Arago.
5. English Standard Yards, A, B, C, 29, 47, 5I, 55, 58.
6. Ordnance Survey io-feet Standard Bar.
7. Indian 10 -feet Standard Bars, new and old.
8. Australian ro-feet Standard Bars.
9. In addition to the above, the ro-feet Standard Bar of the Cape of Good Hope was compared here in 1844 .
[^1]We have invited the Governments of Austria, Spain, and the United States of America, also to send their Standards. We have been promised that of Austria, and but for the unfortunate war in which she has been engaged we should have received it before this.

I have entrusted the execution of the work of comparison, and the drawing up of the results, to Captain Alexander R. Clarke of the Royal Engineers, who also designed the greater part of the apparatus used. The numerous comparisons to be made entailed a great amount of labor upon him, and his assistants, Quartermaster Steel and Corporal Compton of the Royal Engineers.

Before the connection of the Triangulation of the several countries into one great network of triangles extending across the entire breadth of Europe, and before the discovery of the Electric Telegraph, and its extension from Valentia to the Ural Mountains, it was not possible to execute so vast an undertaking as that which is now in progress. It is in fact a work which could not possibly have been executed at any earlier period in the history of the world. The exact determination of the Figure and Dimensions of the Earth has been the great aim of Astronomers for upwards of two thousand years, and it is fortunate that we live in a time when men are so enlightened as to combine their labors to effect an object desired by all, and at the first moment when it was possible to execute it.

HENRY JAMES,
Ordnance Survey Office, Colonel Royal Engineers. Southampton, Ioth August 1866.

I.

DESCRIPTION OF THE COMPARING APPARATUS

AND OF CERTAIN

STANDARD BARS.

1.

The rom especially designed and built for the purpose of comparing standard measures is situated in one of the angles of the boundary wall of the grounds of the Ordnauce Survey Office, Southampton. The situation has two advantages; it is sheltered in some measure from the mid-day sun by a high house immediately on the souch side, and the direction of the room is very nearly perpendicular to the meridian. The bar-room proper is built inside of an outer building, and partly sunk below the level of the ground. This will be understood by a reference to Plates I. and II.

FFF is the old boundary wall.
ffff. the walls of the outer building.
HHHH . . . the walls of the inner, or bar-room.
$p p p . . .$. . a clear passage round the inner room.
$r r$. the concrete roof of the room.
www the windows of the outer room.
WW the two windows of the inner room.
ss steps down to the floor of inner room.
$\mathrm{DD}^{\prime} \mathrm{D}, \ldots$. . the double door of inner room.
$u u^{\prime}$. strong wooden shutters of windows W.
$\mathrm{PP}^{\prime} \mathrm{P}^{\prime \prime}$. . . . stone piers for carrying microscopes.
BB a hollow beam of mahogany for carrying the bars.
$c c$. two strong fir ralters resting on
SS two stones, deeply sunk, carrying one end of each rafter.
q a small block of stone supporting the other end of each rafter.
$d d \ldots . .$. two oak posts fixing the rafters, and transferring any upward pressure to the ceiling.
ee two blocks of wood firmly screwed to the rafters $c c$, and which immediately receive the hollow beam B.
g. a gas burner ; one opposite each window W.

On the two sides on which the wall $f f$ is in contact with the boundary wall, it is in a series of arches as shown on the left of Plate II. The walls of the inner room will be seen from the plates to be double; the outer is two feet in thickness; then a space of three inches of air; then an inside wall of four inches or a single brick. The passage p is of sufficient breadth to permit one to pass round. The 11423. Wt. 2399.
roof of the bar-room is supported by three iron girders, which carry on their lower flanges large slabs of slate covering the whole room; on these again is laid concrete, one foot in thickness. There are three orifices in the roof of this room; two conical, over the two gas burners, and one cylindrical, for the passage of a stove pipe through the roof. The conical openings are in the middle of the breadth of the room, and about four feet from each end of the room; the upper and outer diameter of the orifice is three inches, the lower and inner about 12 inches. The cylindrical orifice is in the centre of the length of the room, but near the side of the room furthest from the piers PP' $\mathrm{P}^{\prime \prime}$. No stove is ever now used; but after the room was first built a stove was kept burning for some months for the purpose of drying. The gas burners are sometimes used when there is no work going on, to promote ventilation, and carry away any dampness. The room, however, is generally free from damp, and it is very desirable to keep it so.

The foundations of the walls H are strongly built. The flooring consists, first, of low brickwork arches, running the length of the room; then on these is laid concrete, forming a plane floor, interrupted by a space around the microscope piers $\mathrm{PP}^{\prime} \mathrm{P}^{\prime \prime}$, and the stones S, S. On the concrete floor, again, is laid a board flooring in three pieces, as seen in Plate I.; each of these is framed with rafters underneath (see Plate III.jjj.) These three pieces of flooring are disconnected with the walls of the room, and each rests on four blocks of india-rubber which lie between the woodwork and the concrete. By this means a steady bearing was obtained, and any jar or shake communicated to the boards of the floor is deadened in its transmission to the concrete. Thus the vibration caused by any person moving about on the floor is not sensibly transmitted to the piers $\mathrm{PP}^{\prime} \mathrm{P}^{\prime \prime}$, which are entirely disconnected from the concrete floor, and have a foundation of their own.

The fir rafter $c c$, which measures nine inches square in section, is bolted down to the stone S, which is sunk four feet deep in the earth. The rafter has no contact with the concrete floor ; its second point of support is at its further extremity where it rests on a swall block q, and is kept down in its place rigidly by a post of oak, which is jammed against the roof. Neither the board flooring nor the walls have any contact with cc, and the stone S has no contact either with the piers P or the concrete floor. The hollow mahogany bean BB is entirely supported by the overhanging part of cc. It will be seen by this, that changes in the weight supported on BB will not affect the piers $\mathrm{PP}^{\prime} \mathrm{P}^{\prime \prime}$; so that if we remove a light bar, and replace it by a heavy one, the microscopes will not be affected.

The windows IVW are opposite to two of the windows $w w$ of the outer building. The room is but moderately lighted by daylight, the points of the bars being always illuminated by the flame of a candle condensed. The windows are closed by thick wooden doors on the outside. The floor of the bar-room being two feet beneath the surface of the extermal ground is reached by the steps s, s. The room is entered by the folding doors $\mathrm{D}^{\prime} \mathrm{D}^{\prime}$ on the outside, and the door D on the inside. A person entering the room has sufficient space to close the door $D^{\prime} D^{\prime}$ after him before he opens the door D. Thus very little of the external air is brought in.

The object of the different arrangements so far, it will be seen, is to provide a room which shall not be subject to any sudden changes of temperature, and which shall afford three entirely independent foundations for, (I) the observer, (2) the bars compared, (3) the micrometer microscopes.

The dimensions (internal) of the bar-room are-length 19.7 feet, breadth if.5, and height $7 \cdot 7$ feet.

Plate III. presents a front view of the apparatus, with a ten-fect bar under comparison. The flooring is shown in section, and the front side of the box containing the bar is supposed removed. Plate IV. is an end view of the same, and shows the ten-feet bar and the standard yard; the end of the box being supposed removed. Originally, the outer piers were square in plan as shown in Plate I., but were subsequently altered to the shape shown in Plate III. in order that a double toise might be compared.

We shall now describe more in detail the different parts.

The Mahogany Beam.

Great rigidity is here requisite, so that no flexure shall be perceptible under the weight of the bar. The four planks of mahogany of which this beam is built were very carefully selected from well-seasoned timber. The upper and lower planks are 14 inches wide by 2 inches thick; the two sides are 3 inches thick by 5 inches wide. These four, being very truly planed and fitted, were fastened together by copper screws. On the upper surface of the mahogany beam, and running its whole length, are planed cast-iron rails a'a (each in two pieces, seven feet long). As the beam BB may naturally be expected to be liable to warp in course of time, two strips of mabogany a, a, are screwed along the whole length of the beam, and their upper surfaces very carefully planed, to receive the planed iron rails. If the beam BB be found to warp, the upper surface of the strips a, a, can be planed true again. It will be observed that the inner and outer rails differ in section. The beam BB rests upon the blocks $e e$ (which are strongly fastened to the rafters ce). It simply rests by its own weight, which is considerable, and is not fastened. Great care is taken that it is (I) horizontal, and (2) has a perfectly steady bearing on its supports, which are seven feet asunder.

The Carriages.

The two carriages marked $g g, g^{\prime} g^{\prime}$, which support the box that holds the standard bars in Plate III., will be seen in more detail in Plates IV. and V. Fig. 3, Plate V., is an isometric projection, which serves to give a general iden of the carriage as it stands on the rails. It consists essentially of four parts, (1) a lower carriage k ' k, which runs on three wheels, along the rails $a^{\prime} a$; (2) an upper carriage $l^{\prime} l$, which runs on three wheels on rails planed out of the upper surface of the lower carriage perpendicular to the direction of the iron rails $a^{\prime} a$; (3) a clamp ss, with slow motion screw σ and a 'T-shaped piece $t t t^{\prime}$.

The lower carriage is a brass casting, strongly ribbed on the under side, and having bearings for the three wheels $m_{1} m_{2} m_{3}$; on the upper side are left three rails, $r_{1} r_{2} r_{3}$, for the wheels of the upper carriage, and two grooved rails $s_{1} s_{2}$ for the clamp. These rails are very carefully planed. The wheels $m_{1} m_{2} m_{3}$ have axles fitted to the bearings. The wheels $n_{1} m_{3}$ are grooved to run on the angular rail a^{\prime}, and m_{2}, is plain, romning on the flat rail a. By this arrangement it will be seen that the carriage cannot take a faulty bearing. The wheel m_{2} is provided with a brake $x x, y$, which acts as a clamp, and prevents the carriage running on the rails $a^{\prime} a$.

The motion of the upper carriage is perpendicular to that of the lower. The body of this carriage is a casting somewhat similar to the lower, strongly ribbed below, and provided with bearings for the three wheels $n_{1} n_{1} n_{9}$. These three wheels are all grooved, running upon the angular rails planed on the upper surface of the lower carriage. In order to
ensure a perfect bearing upon the rails at all times, one of the wheels, n_{1}, admits of a very small play in a transverse direction, that is, its axle can slide parallel to its own length in its bearings. By this means a perfect bearing is secured on the supposition of there being any defect of parallelism in the rails $r_{1} r_{2} r_{3}$. Screwed to the upper surface of the upper carriage are two bearings $t_{1} t_{2}$, which receive the turned pivots or arms of the piece $t t t^{\prime}$. The boss u receives the box which carries the bars. The extremity t^{\prime} of the 'T-shaped piece rests upon the top of a screw q, which is screwed up from below through the body of the opper carriage. By means of this screw the piece $t t^{\prime}$ is made truly level in a direction perpendicular to the rails $a^{\prime} a$. It will be seen that there can be no shake in the piece ttt', but it must present a perfectly steady basis for the bar box to rest upon, while motion is communicated to it in two directions, and these with perfect smoothness.

It is necessary to be able to communicate a slow motion to this upper carriage, and for this purpose a clamp s is provided, rumning upon the grooved clamping rails $s_{1} s_{2}$. Upon these grooved rails slips of brass are screwed, upon which the clamp bites. The mode of clamping will be understood best perhaps from Figure 4, Plate V. 'The screw s' serves to draw together the piece s and a lower plate c which slides in the grooves. Thus s becomes a fixture at any required part of the rails, and the slow motion screw σ, working in a female screw ν attached to the upper carriage imparts to it a fine motion. The screw σ has a ball joint at b, and is kept in its socket by a small plate ee above. This small plate may be screwed down with more or less pressure, as may be required. The play of the upper carriage on its rails is about three inches; it is prevented running off behind by stops $v_{1} v_{\nu}$.

To support the box containing the bar two of these carriages are required. They are precisely similar, with the exception that while the cross piece $t t t^{\prime}$ iu one has a single boss in its centre, that of the other bas two bosses, one at each extremity. Thus the box is supported on three points; by the one carriage it is supported on two points near the outer edges of the bux, and by the other carriage it is supported in one point at the centre of its breadth. 'The carriage seen in Plate IV., and in Figures r, 3, Plate V., is that one which has the single boss; but besides this single boss u two smaller ones, $u_{1} u_{2}$, will be seen. These, however, are not rigid; they are pressed upwards by a spring, and merely serve to relieve u of part of the weight of the box.

Bar Boxes.

In Plate IV. we have an end view or section of the box containing the ten-feet bar O. Its length is 10.6 fect. The mahogany of which it is made is one inch in thickness. The internal breadth is six inches, and depth six and a quarter. In order to rigidity, which is very necessary, there is a double bottom o o , a space of half an inch being left between the planks. The standard yard being of smaller dimensions than the bar Ol , a strip of mahogany f is fastened to the inside of the box along its whole length. To the bottom o^{\prime} of the box are strongly screwed down (Plates III., IV.) brass pieces $d d$, which carry the axles or pivots of the cradles which support the bar. Inside of each of the upright pieces $d d$, as seen in the end view, Plate IV., is a plate of brass fitted to slide vertically up and down; in these pieces are the Y's or bearings which take the pivots of the axles of the cradles. The sliding pieces are moved up and down by the thread of a vertical screw, which has a fixed shoulder at the top of the upright d. The upper parts l. k of these screws are filed square (that is in section), so that they may be turned by a key similar to a watch key. It is of course necessary that the two extremities of the axle of the cradle be raised together, or that the screws k be always turned exactly the same amount and simultaneously. To effect this a key shown in Figure 6, Plate VI., is used. Here, by a system of three toothed wheels, when the milled head m is turned, it will be seen that the keys k, k^{\prime} (which fit on to the screw heads $k k$, Plates III., IV.) are necessarily turned together.

The cover of the box is provided with apertures for permitting (i) the reading of the dots on the bar ; (2) the thermometers; and (3) the use of the levelling key, so that the bar can be adjusted to focus without opening the box.

The Cradles.

In Plate III. it will be seen that the bar $b b^{\prime}$ rests upon eight rollers, which are framed in two systems of levers. $\beta \beta$ is one lever, moveable round an axis through its centre, which axis is held in the support d. Inside (Plate IV.) of this lever are two smaller Ievers 99 , each carrying at its extremity a roller r; the pivots of these inner and smaller levers are seen at i and i. In the construction care is taken that all the levers balance accurately on their pivots or axles, and that the rollers revolve with the least possible amount of friction.

It will be seen from this lever system that the pressure upwards of each roller upon the bar is the same. Thus the bar is supported by eight equal pressures, and applied at equal intervals. The proper interval between rollers of such a system is investigated by Mr. Airy, in a paper which will be found in the fifteenth volume of the Memoirs of the Royal Astronomical Society:

Each of the systems of levers $\beta \beta^{\prime}, \gamma \gamma^{\prime}$, can, as we have seen, be independently raised or lowered by the key (Figure 6, Plate VI.) Thus the bar $b b^{\prime}$ may be levelled, or either extremity adjusted to focus under the microscopes mm .

Of the eight rollers supporting the bar one ouly is a true cylinder; the remainder are slightly convex or barrel shaped. By this means a proper bearing is ensured. If the rollers were all true cylinders there would be a great probability of some of the contacts being at the outer edges of the bar. With the convex form the contact cannot be far from the centre of the breadth of the bar.

Support of the Standard Yard.

This is shown in end view, f, in Plate IV. and in side view, $b b^{\prime}$, in Plate VI., Figure 5. It is a heavy cast-iron frame, upon which are screwed the brass supports dd. (IV.) or ce' (VI.) These carry two rollers r. (IV.), which can be elevated or depressed by means of a key similar to that shown in Figure 6, Plate VI. The rollers, of which one is a cylinder, and the other slightly convex or barrel shaped, are 18 inches npart.

In the standard yard the lines marking the measure at either extremity are drawn on the surface of a gold pin at the bottom of a circular hole or well, drilled half way through the bar. In order to illuminate the lines properly for observation it is necessary to incline the bar slightly, as shown in the end view b. (Plate IV.) It is kept in this position by two small pieces of brass, one of which will be seen in the drawing, placed between the bar and the rollers. The measure of the inclination is the fraction $\frac{1}{8}$ or the angle $\tan ^{-1} \frac{1}{8}$.

Micrometer Microscopes.

The two principal ones, marked H and K , and seen in the front view in Plate III., are shown in more detail in Plates IV. and VI. Figure 3, Plate VI., shows one of these with its turned collars $c^{\prime} c$, and attached level l. The length of the tube from the diaphragm to the object glass is 12 inches, from the object glass to the external focus 3 inches. The magnifying power is about 60 , and the value of a division of the micrometer about the thirty-five thousandth part of an inch.

The microscope is lield by its collars in a gun-metal holder $\leq s$, Plate VI., Figures $1,2,4$, and Plate IV. This holder is a hollow cylinder, having three arms $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}$ at the middle of its length, and at either extremity internal bearings $e_{1} e_{2} e_{3}$, Figure 4 , for receiving the microscope collars. The microscope is pressed, above and below, into its bearings, by a piece π, which is urged by a spring ζ, which can be drawn back at pleasure by the
small milled head at ζ. The microscope is free to revolve in its bearings, but there is no shake. The bearings, as will be seen in ligure 4, are segments of circles.

This gun-metal holder is again supported on a cast-iron plate aaa, which rests, having three bosses on its under side, on the stone pier. Three screws $\beta \beta \beta$ are bolted into the cast-iron plate, and firmly fixed, so as to be truly vertical when the plate is placed on a horizontal plane. On each of these screws are two brass nuts γ, γ^{\prime}, and between them are held the arms of the gun-metal holder, which have holes through which the three screws pass. If the upper nuts $\gamma^{\prime} \gamma^{\prime} \gamma^{\prime}$ be released, the weight of the microscope and its holder is supported by the three lower nuts γ, γ, , and by them the microscope may be levelled to any degree of nicety, and then by a gentle pressure of the upper nuts held down in its place. The iron casting aaa is provided with a hole $\hat{\delta} \hat{j}$ through which the gun-metal holder (with the lower spring ζ) passes.

It will be seen that by this arrangement a very important point is secured; namely, that the microscope is held in its holder without a strain, and the holder is itself held on the iron casting without a strain; while by means of the attached level, the microscope, revolving in its bearings, can be made vertical. Further, the means is supplied of raising or lowering, by the nuts, the microscope, when it may be required to bring it to focus over a given point.

The upper collar c^{\prime} is furnished with a flange f, which takes a bearing on the upper edge of the gun-metal holder, and gives the microscope a definite position vertically.

Besides these microscopes there are smaller ones, of which one, A, is shown in Figures $5,6,7$, l'ate V. They are held in almost exactly the same manner as has just been described for the microscopes H and K.

Illumination.

The divided surface under observation is illuminated by the light of a candle CC, Plate IV., passing through a lens l^{\prime} three inches in diameter; the lens is set in a brass cell, fitting into a correspooding circular orifice in the cast-iron stand. Thus the light of the eandle is condensed on the point under observation (Fig. 5, Plate V.) The candle itself is contained in a brass tube which has a spring in its bottom continually pressing up the candle as it burns; thus the position of the flitme is invariable, and when once lighted and placed in the proper position it does not require any further attention. The light of the candle illuminates also the micrometer head.

The light thus thrown on the divided surface of the bar is excellent, and leaves nothing to be desired. The heat of a candle is considerably less than the heat of gas or even of an oil lamp. Also the position of the flame with respect to the bar is favourable, for being above it, the air immediately heated by the candle ascends. A sheet of plate glass is always placed in a vertical plane immediately in front of the candle, between it and the microscope; this partly intercepts the heat of the candle, and prevents any currents of air (caused by the movements of the observer) from causing the flame to flicker.

Thermometers.

The thermometers which are used to indicatc the temperatures of bars under comparison have their bulbs at right angles to the tubes; the bulbs passing downwards into circular wells drilled into the bar, while the tube or stem, which is mounted on a metallic plate, lies on the surface of the bar. The metallic plate is six inches in length by three quarters of an inch in breadth. The tube of the thermometer is five inches long; and the length of one degree Fahrenheit is about one fifth of an inch. The tube is divided to tenths of degrees. Four of these thermometers extend from 30° to 50°, four from 50° to 70°, and four from 70° to 90°. Some of the thermometers were made by Messrs. Troughton and Simms, and some by L. Casella of Hatton Garden. The thermometers, when lying in the bars,
are read by microscopes $u n n n$, Plate III., whose axes are vertical; the lower part of each of these microscopes is set in a brass slide, whereby it is permitted to traverse the whole length of the thermometer; the corresponding opening in the cover of the box being six inches long by an inch broad. The magnifying power of the microscopes is about ten times, so that the thermometer reading can be estimated to ro $\frac{1}{5} 0$ of a degree Fabrenheit; and the field of view is sufficiently large to permit the reading of at least one of the numbers on the scale marking the degrees.

Besides these thermometers with bent bulbs there are some similar thermometers with straight bulbs, which, in the case of standard bars which have no wells, are simply laid upon the surface of the bars.

The errors of the working thermometers (as these may be called) are obtained by comparison with Standard thermometers which have both the boiling and freezing points marked on their scales. The following Standards are twenty-four inches in leugth :-
"Casella, No. 3241 ," from 0° to 220° Fahrt. : $1^{\circ}=0.0987$ inches in length.
" $3951, \quad, \quad 20^{\circ}$ to $215^{\circ} \quad, \quad: 1^{\circ}=0.1025 \quad "$
and the following, twenty-two and twenty-three inches long :-
"Kew, No. 26," from 20° to 220° Fahrt. : $r^{\circ}=0.0962$ inches in length.
" $36, \quad, 20^{\circ}$ to $220^{\circ} \quad, \quad: 1^{\circ}=0.1000 \quad$ "
In addition to these, reference has been made to some of the standard thermometers constructed with such very great care and skill by the late Mr. Sheepshanks, during his labours in the construction of the New National Standard Yard and its copies. Those examined have the distinctive marks C_{2}, A_{5}, R, and L. These last two are the thermometers which were inserted in his quicksilver trough, and on which in fact almost the whole of Mr. Sheepshanks' operations in the comparison of his own standard depend. The freezing points of L and R, and all the errors of calibration, were detcrmined by Mr. Sheepshanks, but the tubes do not extend to the boiling point. The scale on these thermometers is a scale of tenths of inches. The valucs were determined by Mi. Sheepshanks in 1850 by comparison with five of his own original thernometers.

Apparatus for Comparison of Thermometers.

Very numerous comparisons amongst the thermometers just described have been made. The apparatus for the comparisons will be seen in Plate VII., Figures 2, 3, 4. It consists essentially of a water trough mm , and a bracket BB carrying a microscope which is so held as to be free to slide in two directions at right angles to one another. The bracket is fastened to the wall W of the bar-room (its position, T, is shown in Plate I.), and supported by the prop P ; or when the comparisons of thermometers have to be made at high temperatures, the bracket is fixed in another room which is heated by a stove. To each end of this platform an iron plate is screwed, for the purpose of holding the two parallel cylindrical iron rods $x x^{\prime}$, which are raised about half an inch above the surface of the platform. On these two rods there slides a block of mahogany C. This block grasps the rods by means of three rings on its under surface. Thus it slides with a very even motion in a direction parallel to the length of the water trough $m m$. The brass pieces $z z$, screwed to the upper surface of the block C, form a groove or slide in which the arm $\quad 4 y$ of the microscope slides in a direction perpendicular to the length of the water trough. The rods $x x^{\prime}$ are fixed in an accurately horizontal position.

Into the extremity of the arm $y y$ is screwed the tube $\beta \beta$, in which, again, the tube of the microscope AA' slides. The length of the microscope tube from the object glass to the diaphragm is two feet, and from the object glass to the external focus about the same. In the diaphragm there slides a small rectangular piece of plate glass $\alpha \alpha$, having on its surface a series of eleven converging lines. These are for the purpose of subdividing the spaces on
the long thermometers (where a degree is about one tenth of an inch long) into tenths. The lines are made to converge slightly so as to suit different thermometers, the lengths of a degree being slightly variable. The diameter of the object glass is 1.25 inch, and the magnifying power of the eye piece about 8 times. 'The tube AA^{\prime} is very accurately vertical.

The water trough is a wooden box whose internal dimensions are, length 29 inches, breadth 9 inches, depth 9 inches; about the centre of its depth are fixed four lars of wood, ν, upon which lie the thermometers t, the box being filled with water.

To sccure uniformity of temperature in the water, it is agitated by fans r^{\prime}, two of which are fixed to each of the vertical rods $n u$ '. The lower extremities of these rods revolve in pivots, and an upper bearing for them is formed by the brass pieces opq, of $p^{\prime} \neq$. The rod $n n$ is made to rotate by the handle s, and its rotatory motion is communicated to the other rod n^{\prime} by means of the elastic band uu. 'Thus on the turning of the handle s the four fans are set in motion.

In order to prevent the water or thermometers being disturbed by the presence of the observer, a wooden screen, EE, intervenes. This screen is attached to a platform D, on which the obscrver stands while reading the thermometers; the handle s is within convenient reach of his left hand.

In Figure 1 is shown the apparatus for examining the errors of division or of calibration of the long thermometers. On the heavy brass plate $b b^{\prime}$ are crected the uprights c, c^{\prime}, which are joined by two parallel brass rods ee'. On these rods slides a brass platform, f, which holds the rod e in two places, or by two bearings, and the rod e in a single bearing. 'This platform can be fixed in any required position by the serew g. The platform carries a transverse sliding piece i, into which is screwed a vertical cylinder $/ h$. In this cylinder the microscope a slides vertically, and so is capable of focal adjustment over the thermometer $t t^{\prime}$. On the plate $b b^{\prime}$ there slides longitudinally a narrow rectangular plate of brass, $d d^{\prime}$, having a close-fitting bearing at either end. The longitudinal motion is communicated by a micrometer screw m. On the upper side of $d d^{\prime}$ there are two small pieces $k k k^{\prime}$, each provided with a spring whereby the thermometer is gently but firmly held in a horizontal position. The micrometer of the microscope is here made no use of ; the transverse wire is left as a fixed point of reference in the centre of the field, and all measurements are made by the micrometer screw m, which communicates a small motion to the thermometer in the direction of its axis.

Boiling-point Apparatus.

The apparatus for the determination of the boiling point is shown in Figures 5 and 6, Plate VII. Figure 5 is a perspective view of the apparatus supported on a stool at one end, and on a small gas stove at the other. Figure 6 is a section by a vertical plane through the centre. It may be taken asunder into three parts, the boiler a, the tube $d d$, and the plate $f f$. The boiler is a cubical vessel (side six inches) having fire faces of copper and one $b l$ a plate of thick brass; towards the upper part of the face is a rectangular aperture through which the thermometer tubes pass. The copper tube $d d$ is soldered at the one end to the rectangular brass plate $c c$, and at the other to the rectangular brass plate re. Both these plates have apertures corresponding to that in $b b$; the apertures are rectangular, 2.75 inches in breadth, by 1.25 inch in height. Inside of the tube dd is a second copper tube (Fig. 6) soldered at one extremity to the plate ce, but open at the other ; falling short of the plate ee by half an inch. The transverse section of these two tubes would be simply represented by two similar concentric rectangles. The steam arising from the boiling water in a, passes along the imer tube, and then returns along the outside of that tube, escaping by means of the raised part g through an aperture in the plates $c c$, , bt. It does not escape finally by this aperture, but spreads over the upper surface of the boiler a, being confined by a copper covering. The object of this is to keep the top of the boiler hot, and so prevent any condensation over the bulbs of the thermometers.

The steam escapes finally by a cock s, whose aperture is under control. The manometer $h h$, supplied with a small quantity of wuter, indicates the pressure; the vessel is filled by means of the funnel k. The aperture in the brass plate ee is closed by means of another plate ff, having four small circular holes half an inch apart from centre to centre, through which the thermometer tubes pass. To make the fitting of the thermoneter tubes stem. tight, they are caused to pass through small holes in a sheet of vulcanized india-rubber. This piece of india-rubber is kept in its place against the plate off by means of another small plate screwed to ff: this last plate having, of course, four circular holes corresponding to those in the plate $1 f$. Thus the thermometer tubes pass through the circular holes in the india-rubber without coming into actual contact with cither of the two brass plates. At the extremity next the boiler the tubes simply rest upon a piece of wire stretched horizontally across the aperture in the plate $c c$. The plane joining the upper edges of the plates $c c, e e$ is by construction parullel to the tubes of thermometers held as described: by this means, laying a level across the upper edges of ec, ee from one to the other, we can, with the assistance of the wedge u, render the tubes of the thermometers accurately level,-a very needful adjustment. The water in the boiler is about an inch below the bulbs of the thermometers. The height of the water in the ressel is indicated in the ordinary manner by a small glass tube (which does not appear in the drawing). The water is lieated by means of a small gas stove, which is very convenient, as the aniount of heat supplicd is thus under ready control. The water used in a is from the condensed steam of a large boiler used for other purposes. By means of the small screws shown in the drawing, cdef may be detached at pleasure from a; and so also can the plate ff, holding the thermometers, be detached from ee. In order to render these joints steam-tight, a sheet of vulcanized indiarubber (with a central rectangular aperture) is placed between the plates $l b, c e$, and another between the plates ee, ff: A very small portion of the tubes of the thermometers projects beyond ff, only as much as is required to enable one to read the 212° division line properly. The apparatus is placed beneath the long microscope $\Lambda \mathrm{A}^{\prime}$, which is used to read the boiling point.

Supports of the Prussian or Betgian Toises.
These bars have, in all comparisons, as far as is known, been supported on four rollers at a given distance apart and in a straight line. The mode of effecting this, as followed in the present operations, will be understood from Figures a and 2, Plate ViII. Figure I shows a plan of the box which contains the Prussian and Orduance Toises when under comparison. The top of the box is removed, and the Prussian 'Toise is alio removed, showing its supporting rollers. T'T' is the Ordance Toise resting on its cradles. Figure 2 shows a side elevation of the supports of the Prussian Toise; and the dotted line indicates the box. The box oooo containing these bars is of mahogany, an inch in thickness; the internal breadth is six inches and depth five inches; there is a double bottom o' o ' for rigidity, and also partly to bring the bars to the proper height. The four rollers e,eec' are carried by a cast-iron bar raa. This bar is traversed by two short steel cylinders $c c$, Figure 5, which serve as arms or axes, whereby it is held; they have their bearings in brass plates which slide with a vertical motion in the uprights $b b$. These sliding pieces receive their movement upwards or downwards by vertical screws, which are filed square at their upper extremities $/ k k$. The screws are simultaneously turned by the key, ligure 6, Plate VI. The uprights $l b$ are strongly (but removeably) screwed to the bottom of the lox. In order to avoid the strain which might occur were no provision made for the relative expansion and contraction of the iron bar and the mahogany box, the holes or bearings in the sliding plates, which at one end of the bar receive the pivots c, are slightly clongated. It will be scen, then, that we have the means of raising, lowering, or levelling the bar aa by means of the key, while the bar itself is held very firmly, and yet altogether free from strain.

The manner in which the bar au holds the rollers or rather the roller frames will be understood by Figures $4,7,8$. The frame, of brass, dd, fits closely upon the iron bar,
being bolted through by the bolt f; but the hole through which f passes is slightly elongated in a vertical direction, so that the frame $d d$ may be moved upwards or downwards, but the movement is purposely stiff, and not easy. By driving the little screws $f . f^{\prime}$, whose points rest on the upper surface of the bar aa, the frame, with the roller it carries, is raised. On unscrewing $f f^{\prime} f^{\prime}$, and relieving thus their points from contact with the bar, the frame, with its roller, may be pressed down (requiring some force) by the hand until the points of f and f 'again come into contact with the bar. Thus it will be seen that we have the power of raising or lowering the rollers; but this applies only to the two central rollers ee; the extreme rollers ' e^{\prime} ' have no vertical adjustment; it is sufficient that the other two pe can be brought into a straight line with e e e. One of the extreme rollers e, is capable of a slight transverse motion by means of the slow motion screw g; the other roller e^{\prime} has no adjustment. Two of the rollers e, e^{\prime} have flanges; the other two, ee, have not; one of the central rollers, Fig. 8, is a cylinder; the others are all slightly convex or barrel-shaped. The object of this is to secure for the Toise an unconstrained bearing; were the rollers all cylinders there would be a danger of submitting the bar to a small torsion force. In Figure $2 t t$ is the Toise resting on the four rollers. To the extremities of the bar $u a$ are fixed the horizontal brass plates h / h, which carry the two parts of -

The Contact Apparatus.

This is shown in plan in Figure 3, with the Toise lying in between; and in perspective, mounted on its stand in Figure 6. It will materially simplify the explanation of this apparatus if we first explain that the two flat semi-cy linders $p p^{\prime}$ are the essential parts; the remainder of the screws, \&c. merely afford the adjusting power whereby we are enabled to place these semi-cylinders in any required position. Each of the semi-cylinders has a fine line on its surface (parallel to its base or diameter), and about the hundredth part of an inch from the circumference; so that when the two semi-cylinders are in contact, as in Figure 6, these form a pair of parallel lines; parallel to, equidistant from, and on opposite sides of the line, which is then a common tangent to the two semi-cylinders.

When under comparison, the Toise lies between the two parts or halves of this apparatus; one half being fixed on each of the plates $h h$ (Figures 1,2) at the extremities of the bar aa. During the comparisons the semi-cylinders are in contact with the terminal polished disks of the Toise; so that if σ be the distance between the parallel lines on the semi-cylinders when they are in contact as in Figure 6, the distance between the same lines when the two semi-cylinders are mounted on the plates h / h and in contact with the Toise, whose length is τ, is $\sigma+\tau$. Strictly speaking, the pieces we have called semi-cylinders are not so. They are formed thus :-A cylinder is turned of steel 0.75 inch in diameter and $0 \cdot 12$ inch thick; its cylindrical surface is then made slightly convex, so that the solid becomes a segment of a prolate spheroid contained between two planes perpendicular to the axis of revolution, and at equal distances on either side of the centre of the generating ellipse. The radius of curvature of this ellipse at the extremity of its transverse axis is about two inches. The surface of the steel is before removal from the lathe very highly polished, all the marks of turning being worked out. The piece of steel is then cut in halves along a diameter. When the two halves are laid upon a horizontal plane surface, and their curved edges brought into contact, it is clear that their common tangent plane is vertical. This may not be true if through any imperfection in the turning, the solid produced is a segment of an ellipsoid contained between two planes at not exactly the same distance on opposite sides of the centre, unless the faces which are uppermost formed originally the same plane, that is before the cylinder was cut.

It will be scen by this that the semi-cylinders have contact with the vertical terminal stcel disks of the Toise, not over their whole surface but in a point only. This has the advantage that there is the less chance of any particle of dust, \&c. making the contact false. It would have been casier to have made an apparatus which should have presented a
plane surface to be brought against the terminal disks of the Toise, but there would have been greater risk of imperfect contact.

It is necessary to the perfection of the comparisons that we have perfect control over these semi-cylinders. Now, in order that the position of a body in space be fixed, six quantities are required to be given. For instance, suppose a sphere, and let there be two points marked on its surface \bar{P}, Q. Its centre is fixed by three rectangular co-ordinates, but it is still free to revolve in any manner round the centre. But if we have the altitude and azimuth, so to speak, of that point in which the line joining the centre and P meets the celestial sphere, the body is now free only to revolve about a fixed line; and one more quantity given will fix its position absolutely. And it will be found that the same number of quantities are required whatever may be the method of fixing the body.

Now, in adjusting the semi-cylinder to contact with the plane terminal circular disk of the 'Toise, there are six things to be considered :-
I. The diameter or base of the semi-cylinder must be horizontal :
2. The radius drawn on the surface perpendicular to this diameter must be horizontal:
3. The contact with the disk of the Toise must be at the proper altitude, that is, on the horizontal diameter of the disk :
4. The contact must also be on the vertical diameter of the disk:
5. The contact must not be intercepted by any particle of dust or other matter :
6. The fine line (parallel to the base or diameter) which is drawn close to the circumference of the semi-cylinder must be parallel to the terminal disk of the Toise.
Of these conditions the first and second sccure the horizontality of the plane faces of the semi-cylinder; the third and fourth secure a contact at the centre of the disk of the toise ; the fifth, an unintercepted contact; and the sixth provides that the actual contact shall be at that point of the convex surface of the semi-cylinder in which the vertical tangent plane is parallel to the fine line on the surface.

We now proceed to explain Figures 3 and 6. The semi-cylinder p is firmly screwed to the rectangular steel plate-we shall call it the stecl needle, l. 'This stecl needle slides, without any looseness or shake, between the brass pieces $k / k / k$ which are screwed to the piece ggg. It is urged forward by the spring point n, the spiral spring urging n being contained in the small cylinder m. The force of the spring can be regulated by the screw μ; the cylinder m is fixed to the piece ggg. This piece ggg is also made to slide, between ff and $f^{\prime} f^{\prime}$, on the plate $d d$; the motion is communicated by the screw γ, which has a shoulder at h fixed to ggg, and works in the female screw h^{\prime}, which is connected with the plate $d d$. This last plate, again, slides between the pieces $b b$, on the lower plate aaa. The motion is communicated by the screw δ, which works in a shoulder attached to the plate aca. The screws $\gamma \delta$ then communicate longitudinal and transverse motion to the semicylinder p.

The plate aaaa rests upon either the plate h, Figures 1,2 , or upon the stand AAA; the contact being on the points of the four screws $c^{\prime} c^{\prime} c^{\prime}$. By these screws we may either level or raise bodily the plate aaa. 'To support a body on four points is generally objectionable; but in the present case not the slighest difficulty arises from this cause, as the very minutest amount of shake is readily discovered on slightly tapping the head of either of the screws $c^{\prime} c^{\prime}$. Finally, the plate $a a a$ is held down, either to the stand AA or to the plate h, Figures 1,2, by the shoulders of the screws $e e, e$, which pass through holes (without threads) in the plate aaa.

For the purpose of levelling, a snıall but very delicate level stands upon the needle l.
The holes in the stand AAA for the three screws ee, c, of each half of the contact apparatus, are so cut by the maker, that the directions of the sliding motions of the two needles shall be exactly parallel. In order to draw the lines on the steel cylinders, small pieces of platinum are inlaid in a groove on their upper surfaces. The two parts are then mounted on the stand, and the semi-cylinders being brought lightly to contact, the transverse slow-motion screws δ are turned until the common tangent line at the point of contact
is perpeudicular to the line of motion of the needles. Lines are then drawn, as in the accompanying Figure I.

Fia. 1.

Fig. 2.

The dotted line joining the centres $c t^{\prime}$, Fig. 2, corresponds with the line of motion of the necdles, and the lines $a b, a^{\prime} b$, necessarily broken, are drawn parallel to and equally distant from $c c^{\prime}$. Then perpendicular to these and parallel to the common tangent line are drawn the lines h $h h^{\prime} k l^{\prime}$. If, however, the semi-cylinders be not accurately opposite to one another when the lines are drawn, and thus their centres describe, not the same struight line, as in Figure 2, but parallel lines as in Figure I, at a very small distance apart, and if the lines $a b a^{\prime} b^{\prime}$ be then drawn, neither of them equidistant from either of the dotted lines, then the distance of the transverse lines $h h^{\prime} k k^{\prime}$ can be increased by adjusting the two centres $c^{\prime} c^{\prime}$ into coincidence with the line of motion of the needles. But this maximun distance is the quantity absolutcly required to be known, as will be seen if we suppose the semi-cylinders in contact with the vertical parallel terminal disks of the Toise, the lines $h l^{\prime} k c^{\prime}$ being parallel to those disks.

We may correct for this error in the relative position of the semi-cylinders when the lines are drawn, in the following manner. Let ρ be the radius of either semi-cylinder, $\xi-\lambda, \varrho-\lambda^{\prime}$, the distance of $h h^{\prime}$ and $k k^{\prime}$ from the centres $c c^{\prime} x$, the distance apart of the parallel lines through $c c^{\prime}$, also let io be the distance apart of the parallel lines $h / h^{\prime} k k^{\prime}$ when the cylinders are in contact as in the figure. Now, (1) by the motion of the transverse adjusting screws let the semi-cylinders, maintaining their parallelism and contact, be so placed that $a b^{\prime}$ shall fall into one and the same straight line; in this position let the distance of $l h l^{\prime}$ from $k k^{\prime}$ be $\delta^{\prime}:(2)$, let, similarly, a^{\prime} and b be made to fall into one and the same straight liue, and in this position let the distance of $h l^{\prime}$ from k / c^{\prime} be $\bar{\delta}$. 'Then we have the following equations :

$$
\begin{aligned}
& \left(\delta^{\prime}+2 \rho-\lambda-\lambda^{\prime}\right)^{2}+(i+x)^{2}=4 \xi^{2} \\
& \left(\delta+2 \rho-\lambda-\lambda^{\prime}\right)^{2}+(i-x)^{2}=4 \xi \\
& \left(\delta+2 \rho-\lambda-\lambda^{\prime}\right)^{2}+x^{2}=4 \xi^{2}
\end{aligned}
$$

Where i is the distance apart of the parallel lines $a b a^{\prime} b$. These equations becone, siuce i and x are very small compared with ρ

$$
\begin{gathered}
\lambda+\lambda^{\prime}-\frac{(i+x)^{2}}{4 \varrho}=\delta^{\prime} \\
\lambda+\lambda^{\prime}-\frac{(i-x)^{2}}{4 \varrho}=\delta \\
\lambda+\lambda^{\prime}-\frac{x^{2}}{4 \varrho}=0 \\
\therefore \frac{i x}{\rho}=i_{1}-i^{\prime}
\end{gathered}
$$

consequently x becomes known by the measurement of $\bar{\partial},-\bar{\partial}$, aud we have

$$
\lambda+\lambda^{\prime}=\grave{o}+\frac{\rho}{4 i^{i}}(\grave{o},-\check{o})^{2}
$$

The parallelism of the lines $h h^{\prime}, k k^{\prime}$ when the apparatus is mounted on the stand AAA is very perfect, as is easily verified by the motion of the transverse wire of a micrometer microscope.

2.

National Standard Yords.
The various copies of the National Standard Yard, constructed of different metals, as cast steel, cast iron, Swedish iron, bronze, \&c., are all one inch square in section. Towards the extremities of one face of the bar, and thirty-six inches apart from centre to centre, two cylindrical wells are sunk to the depth of the centre of the bar; in the centre of the bottoms of the wells gold pins are inserted, and upon the prepared surfice of cach, three equidistant parallel lines perpendicular to the length of the bar are drawn. The distance apart of these parallel lines is one hundredth of an inch (very approximately). They are crossed at right angles by a pair of parallel lines o.02 inches apart, parallel to the length of the bar. The puint to be measured from on each gold pin is that point of the midule transverse line which lies midway between the longitudinal parallel lines. Thore are four wells in the upper surface for receiving the bent bulbs of thermometers; these wells (in those copies distributed to the Ordnance Survey Office) are at five and fifteen inches from the centre on either side.

Ordnance Survey Standurd.

This Stnndard was constructed for the Ordnance Survey in 1826-7 by Messrs. Troughton and Sinoms; it is of wrought iron 122.15 inches in length, 1.45 in breadth, and 2.50 inches in depth. It is supported on two rollers at one fourth and three fourths of its length. The cuds of the bar are cut away to half its depth, so that the dots marking, on platinum pins, the measure of ro feet, are situated in the neutral axis of the bar. On the upper surface, 40 inches from the middle of the bar towards either extremity, are two wells for thermometers. This bar bas been always designated \mathbf{O}_{1}.

Ordnance Intermediate Birr.

In order to make a comparison between the lengths of the two bars just described, that is, to obtain the length of the Ordnance ten-feet Staudard in terms of the staudard yard, it was necessary to construct an intermediate bar of ten feet, sublivided into yards and feet. This bar has its section in the form of a girder, with equal flanges above and below, as will be seen by referring to Plate IV. It is of wrought iron, carefully planed. The breadth is 1.53 inches, and depth 2.48 inches. A groove balf an inch in breadth, and about an eighth of an inch deep, is planed out through the whole length of the upper surface. In the centre of the breadth of this groove seven holes were drilled, about a tenth of an inch diameter, one at the centre of the bar, and three on each side of the centre, namely, at one foot, two feet, and five feet from the centre; thus dividing the bar into six spaces, viz., one yard on the left, four contiguous spaces of one foot cach, in the centre; and one space of a yard on the right. Into the holes just described were serewed small cylindrical iron plugs, whose heads were afterwards filed off level with the upper surface of the bar, but raised above the bottom of the groove. The tops of these plugs
were then with some considerable difficulty and labour filed down, until they appeared to be in true horizoutal line-the bar resting on eight rollers; that is, no one above the level of the others. This was tested by a delicate level, and a platinum pin was then iuserted in the centre of each plug. A fine thread was then stretched along the length of the bar over the centres of the platinum pins, and on each pin was drawn a pair of parallel lines, one on either side of the thread, and so about 0.02 inch apart. Finally, on each pin was drawn a single transverse line, perpendicular to the parallel lines. The measures are taken from that point of the transverse line which is midway between the longitudinal parallel lines.

In the upper surface of the bar are four wells for thermometers, one in the centre of each of the extreme yard spaces, and one in the centre of cach of the spaces of oue foot adjacent to the centre; so that the wells are, six, and forty-two, inches from the centre bar towards cither end.

This bar is designated Ol_{1}.
Similar, except in the disposition of the subdivisions, are the bars $\mathbf{O I}_{9} \mathbf{O I}, \mathbf{O l}_{4}$: the last two are the Australian Standards. All these have been invariably supported on the cradle system of eight rollers.

Ordinance 'Toise.

As in the bars just described, the section of this bar is that of a girder with equal flanges above and below ; the exact section is shown in Figure 8, Plate VI. It is of cast steel, carefully planed. The points are inserted in the same manner as in the bar OI_{1}; they are four in number, subdividing the bar into three spaces, namely, two consecutive yards, and a space of 4.74 inches, so that the distance between the extreme points is 76.74 inches. On each of the four platinum pins are drawn, not one transverse line, as in $\mathbf{O} \mathbf{I}_{1}$, but, as in the standard yards, a system of three parallel equidistant transverse lines, the central line being that used in the measurements. The distance apart of the parallel transverse lines is, as in the standard yards, one hundredth of an inch. The breadth of this bar is I .00 inch, and its depth 1.50 inch; the extreme length 78.0 inches. Through the upper surface are drilled two wells for thermometers, 22.5 inches on either side of the centre. The bar rests on a cradle system of eight rollers. It is designated OT.

Ordnance Metre

Is a bar the same in section, material, and general construction as the preceding, but has only three points on its surface, subdividing the length into two spaces, one of which is a yard, and the other 3.37 inches, so that the distance of the extreme points is 39.37 inches. The extreme length is 41 inches; the therwometer wells are $11 \cdot 75$ inches on either side of the centre of the bar. The bar rests on a cradle system of four rollers. It is designated OM.

Ordnance Foot.

This is a bar of wrought iron, an inch square in section and thirteen inches in length. The lines marking the inches into which the foot is divided are drawn on platinum pins, which are flush with the upper surface of the bar. The extreme inches are divided on inlaid strips of platinum into tenths, and two of the tenths in each inch into hundredths. There are two wells for thermometers, three inches and a half' on either side of the centre of the bar. It is designated OF.

Prussian and Belgian Toises.
These are flat bars of cast steel, similar in all respects. The breadth is $1 \cdot 70$ inches, depth 0.39 inch; terminating at each end in a cylinder 0.56 inch long, as shown in Figure 3, Plate VIII, the diameter of the cylinder coinciding with the depth of the bar. At the extremity of each of these cylinders is affixed a smaller cylinder of tempered steel, having its axis coincident with the axis of the bar; its diameter is 0.12 inch, its length only 0.016 inch. The faces of these small cylinders, which are perfect planes, beautifully polished, and at right angles to the axis of the bar, form the terminal planes (les bouts) of the measure. The Prussian bar has the distinctive mark No. 10.; the Belgian is marked No. I1. They were made by M. Baumann of Berlin, and are copiea of the Toise of Bessel, preserved in the Observatory at Königsberg.

The Prussian bar bears the following inscription :-
1852. Dieser Stab in der Wärme von 16.25 graden des hunderttheiligen thermometers, in der Achse seiner gedruhten enden gemessen, ist 0.00019 linien kïrzer als die der Königsberger Sternuarte gehörige copie der toise du Pérou.

No. 10. Bammann, Berlin.
The Belgian bears the following:-
1852. Dieser Stab in der Wärme von 16.25 graden des hundertheiligen thermometers, in der Achse seiner gedrehten enden gemessen, ist 0.000202 linien kürzer als die der Königsberger Sternwarte gehörige copie der toise du Perou.

No. 11. Baumann, Berlin.
These bars are supported each on four points adjusted into a straight line, the distance apart from one to another being $2 \mathrm{I} \cdot 5$ inches.

II.

ON THE SOURCES OF ERROR

AND
THE METHODS OF COMPARING.

1.

The elasticity of the materinl of which standards of length are constructed rendering them to a certain degree susceptible of change of form, it is of the utmost importance that a standard bar be so held as that the strain to which it is subjected be the least possible. Moreover, it is absolutely necessary that the free expausion and contraction of the bar be not impeded. By the cradle system of lever rollers these points are both secured, for when the friction of the rollers is reduced to a minimum the bar moves with a very slight pressure. Thus the ten feet bar $\mathbf{O I}_{1}$, weighing 81 lljs ,, when resting on its eight rollers is moved by a force of 4.40 lbs .; and the bar OT, weighing 22 lbs ., when on its eight rollers is moved by a force of 1.03 lbs .

The standard yard being a comparatively short bar, has been, in the present comparisons, supported always on two rollers at one fourth, and three fourths of its length, care being always taken that the rollers were free to revolve with the least force. It was satisfactorily proved by the late Mr. Sheepshanks that the leugth of this bar is not affected by the mode of support; the reason being that the lines are engraved on a surface coinciding with the neutral axis of the bar.

It is of much importance that the supporting apparatus upholding the bars under comparison be strong, weighty, aud free from shake; it should also be as far as possible from possessing any clasticity, and should be not liable to be disturbed by the presence of the observer or his necessary movements. In the present operations this point has been carcfully studied; the beans which support the travelling carriages have a foundation entirely separate from the flooring; and the travelling carriages are so constructed that any shake is next to impossible, nor can it be introduced by wear. The boxes which contain the bars are very strongly put together, and have considerable rigidity; they are, moreover, supported on three points. The boxes always are supported at the same parts of their bottoms, brass plates being attached below, which plates come into immediate contact with the bosses on the carriages.

The room in which the comparisons are wade is specially adapted to exclude sudden changes of temperature. A change of more than one degree Fahrenheit in the course of 24 hours is not very common, and sometimes there has not been a change exceeding one degree for weeks. Still there is even in this room caution required, especially when the general state of the weather has changed suddenly from warm to cold, or vice versâ; for in this case it would appear that the stone pillars which carry the microscopes are slower to acquire the change of temperature than the air of the room. Here then the two bars which lie in the box under the microscope are dissimilarly situated; the one is nearer the stone picrs; the other is nearer the centre of the room; and there exists a slight difference of temperature between them, some one or two tenths of a degree. The reniedy for this is to observe with the bars in alternate positions, that bar which is nearest the piers one day
being put nearest the observer the next day. By this means we climinate, or very nearly, at any rate as nearly as possible, the effect of slight difference of temperature between the bars; but it is to be noted that the computed probable error of the results in such a case will be greater than it should be. When the temperature of the two bars differs, as just described, the thermometers do not cleways indicate the difference; its existence is rather inferred from the results of the comparisons.

Another evil not easily remedied is that the bars compared are not all of the same section, and consequently not all equally sensitive to changes of temperature, the more massive bars being slower in taking up a change of temperature than the lighter ones.

A slight disturbance and rise of temperature is almost inevitably caused by the presence of the observer when making the observation, and also partly, perhaps, by the heat of the two candles, which are then lighted, one at each microscope. The effect hus seldom amounted to 0.06 on the mean of the four thermometers. The box remains covered during the comparisons.

2.

The method of adjusting the different parts of the apparatus for the comparison of two bars is as follows:- The box which is to carry the two bars is placed on the carriages, and the bars then placed on their supporting rollers in the box. The box being run in close to the piers until the wheels $n_{1} n_{3}$ Plates IV., VI. of the upper carringes are within an eighth of an inch of contact with their stops $v_{1} v_{\mathrm{g}}$, one of the bars, that nearer the observer (or the outer bar), is carefully levelled by means of a long level laid on its surface.

The microscopes H and K are then placed in the cast-iron stands over the extremities of the bar which has just been levelled. The axes of rotation of the two microscopes are made approximately vertical, by revolving them in their gum-metal holders; they are then by means of the lower nuts γ, γ, γ, Plate VI., Figure I, brought as ncarly as possible to focus orer the lines on the platinum disks on the bar. The verticality of the axes of the microscope is then again corrected, and the microscopes brought by the sliding of the cast-iron stand (on the stone piers) to bisect approximately by their cross hairs (which are set to zero in the collimation centre of the field) the lines on the bar. These different operations, necessarily interfering with one another, may have to be gone over separately several times before they all stand perfect together. When two birrs are compared, whose lengths, as is usually the case, do not differ more than from five to ten micrometer divisions, the microscopes are generally so placed (the micrometer-heads being outwards, as shown in Plate III.) that each line on the bars will read a small positive number of divisions; that is, supposing the centre of the ficld to read zero; but if the difference be large, as in the comparisou of the Ordnance and Prussian Toises, where it amounts to upwards of 500 divisions, then the microscopes are so placed that the distance of their zeros is a mean between the lengths of the bars; thus in ench microscope equal quantities are measured on each side of the zero or collimation centre. In this case the collimation centre is supposed to read io revolutions, so as to avoid changes of sign in the readings.

The microscopes being brought into adjustment, the upper nuts $\gamma^{\prime} \gamma^{\prime} \gamma^{\prime}$ are brought down gently, so as to clamp the arms of the gun-metal holder firmly. This is liable to disturb some of the preceding adjustments, which are therefore again examined and corrected. The box is now run out from the piers, until the clamp scomes to about the end of its slide; in this position the second or inner bar will be found under the microscopes; and either of the upper carriages being ron in or out small quantities; and the whole box ruu longitudinally a small quantity if necessary, by the motion of both carriages on the rails $a a$, the divided disks are brought into the centres of the fields of the
microscopes. In this position the upper carriages are clamped, and the slow-motion screw σ of each, worked until the intersection of the cross-hairs of the microscopes are found midway between the parallel longitudinal lines on each disk. A small motion is then communicated by hand to the box longitudinally, until the lines to be observed are nearly bisected. This being done, the bar, which was not previously levelled, has to be brought to focus under the microscopes (which remain fixed). This is done by raising or lowering the cradles by weans of the levelling key, Figure 6. Plate VI.

Thermometers are now laid on the bars, their bulbs being inserted in the wells, and the cover placed on the box. On the cover are then fastened (over the thermometer openings) the small brass slides by which the reading microscopes nnnn, Plate III, are held, and permitted to run up and down the length of the thermometer tubes.

It is usual to arrange a pair of bars for comparison, in the afternoon or evening of one day, and to commence the observing the next day. The bars are visited three or four times each day ; a series of comparison has generally consisted of ten visits or comparisons ; and the bars are then dismounted, to be compared, if necessary, another time. It is desirable to have the comparisons of a given pair of bars to extend over as many days as possible, and the comparisons to be broken up into series, so that one series cannot have errors common to the preceding or following series. If a pair of bars be adjusted under microscopes for comparison, then as long as all, or only some, of the adjustments are not interfered with, there may be a constant error ; but if the whole be dismantled, and the comparisons recommenced after some days, and so on, we are much more certain of arriving at the truth. There is little use in multiplying observations within a short space of time during which none of the circumstances of the observations are cbanged. When observations are made in this manner the results may apparently be very excellent, but they are very liable to be affected by some constant error. It is rather required to bring out all the discrepancies in the observations that can be legitimately brought out, by varying, as much as possible, the circumstances of the observations; in each case, of course, taking care that no known error of adjustment is left, nor any known cause of error in action. If, therefore, two bars have to be compared, it is desirable to break up the comparisons into detached series. If anything should prevent this, the different adjustments must be at least renewed as frequently as possible, no one being left undisturbed.

In the comparing of two bars it is most desirable that the majority of the comparisons be made within a few degrees of 62°, this being generally the standard temperature of reference. A smaller number of comparisons at a low temperature, as 30° or 40°, will then enable us to reduce all the other comparisons to 62°.

It is assumed in the reduction of the observations that the temperatures of the two bars lying side by side in the box are the same. We might have taken them to be of the temperatures indicated by the thermometers, and thus small differences would be found; but it is a question whether the thermometers, do indicate the temperature of the metal with such precision as that these differences of reading might be taken to represent the actual differences of temperature of the bars. It has been considered safer to assume the bars to be generally of the same temperature-with the precaution of causing them to exchange positions.

3.

The errors of the short working thermometers are obtained from time to time by comparisons with the Standard Thermometers at the temperatures at which they have stood while in the bars. To explain the manner of comparing, suppose two working thermometers are to be examined; they are laid by the side of two Standards in the water trough, which is filled with water of the requisite temperature, and with their bulbs as nearly as
possible occupying the same part of the water. While so arranged they are at the mid-depth of the water, being covered by about four inches of it. Suppose the thermometers have to be compared at $\mathbf{6 2}$, and the temperature of the air in the place where the water trough stands is at 60°; the water in the trough is made 63°, by the addition of a little warm water, and during the course of, say six hours, it may fall from 63° to 61°, during which time many comparisons nay be made. A single comparison is made as follows:-the water being first agitated by the revolving of the handle; the thermometers are read by means of the long microscope A^{1}, first in the direct order A, B, C, D, and immediately after in the reverse order $\mathrm{D}, \mathrm{C}, \mathrm{B}, \mathrm{A}$. The mean of these two readings of each thermometer is taken as the result of this comparison. The errors of observation in this operation are very small; all the thermometers are read to one hundredth of a degree. Four comparisons are generally made at a visit; the water being stirred immediately before each.

In order to the obtaining of good results, it is necessary that the temperature of the room be not more than a very few degrees different from that of the water in the trough. Otherwise the water cools too quickly.

With respect to the long standard thermometers which are divided to half degrees Fahrenheit, the errors of the division lines, as subdividing into parts of equal cupacity the tube from the line 32° to the line 212°, have been determined (to a certain extent) by the process of calibration. Here it is to be remarked that these thermometers having already gone through this process at the hands of the maker, or at Kew Observatory, before the lines were finally drawn, the residual errors to be determined are very small. First, to determine the error of the division line marking 92°; from 32° to 92° should be one third of the capacity of the tube from 32° to 212°; a column of about $60 \frac{1}{4}$ degrees is accordingly broken off and run along the tube until its extremities slightly overlap the lines $32^{\circ}, 92^{\circ}$. The one extremity will lie between 31° and 32°; the other between 92° and 93°. The thermometer is now laid on the supports, where it is held by two small springs. The microscope is cansed to slide along its supporting rods until the fixed wire is uearly bisecting the line 31°, where it is clamped. It is impossible to have both the column of mercury and the divisions on the glass tube in focus at the same time, and the adjustment must be divided between them; this is an unavoidable source of error. Care is taken that the wire in the micrometer is parallel to the lines on the thernometer. Now by the movement of the micrometer m, Fig. i, Plate VII. the thermometer is drawn along longitudinally, and, first, the reading of the micrometer is noted when the line 31° is bisected; secondly, when the extremity of the column of mercury is bisected; and thirdly, when the line 32° is bisected. The difference of the second and third readings, divided by the difference of the first and third, gives the fraction of a degree by which the extremity of the column lies beyond the line 32°. Taking care that the thermometer is not shaken, the microscope is run nlong its supporting rods until the fixed wire arrives at the line 92°, when it is clamped. Then by the micrometer m, the line 92°, the end of the column, and the line 93°, are successively brought into coincidence with the fixed wire in the microscope. The difference of the first and second readings, divided by the difference of the first and third readings, gives the fraction of a degree by which the column lies beyond 92°. Let the sum of this fraction and that previously obtained, for the other end of the column, be s_{1}. Now tilting up the frame, Fig. 1, Plate VII., without touching the thermometer, the broken column is made to slide along until its ends overlap, by nearly equal quantities, the lines $92^{\circ}, 152^{\circ}$. The fractions of degrees which these quantities measure are then found as before; let their sum be s_{2}. Again, the column is made to slide along the tube until its ends slightly overlap the lines $152^{\circ}, 212^{\circ}$. Let the sum of the fractions in this case be s_{s}. Now, if we by [a.b] mean the capacity of
the tube between the two lines a and b, and if C be the volume of the column of mercury :

$$
\begin{aligned}
\mathbf{C} & =[32.92]+s_{1} \\
\mathbf{C} & =[92.152]+s_{9} \\
\mathbf{C} & =[152.212]+s_{3} \\
\therefore \mathrm{C} & =\frac{1}{3}[32.212]+\frac{s_{1}+s_{2}+s_{3}}{3} \\
\therefore[32.92] & =\frac{1}{3}[32.212]+\frac{-2 s_{1}+s_{2}+s_{3}}{3} \\
{[92.152] } & =\frac{1}{3}[32.212]+\frac{s_{1}-2 s_{2}+s_{9}}{3} \\
{[152.212] } & =\frac{1}{3}[32.212]+\frac{s_{1}+s_{2}-2 s_{3}}{3} \\
\therefore\lfloor 32.152] & =\frac{2}{3}[32.212]+\frac{-s_{1}-s_{2}+2 s_{3}}{3}
\end{aligned}
$$

Therefore the errors of the division lines $92^{\circ}, 152^{\circ}$, are-

It is almost unnecessary to say that this operation will have to be repeated several times before the exact truth can be arrived at.

Again, breaking oft a column of thirty degrees, we may, by making it lie first between 32° and 62° and then between 62° and 92°, so obtain the error of the line 62°. Then by a column of 20 degrees we can get the errors of the lines $52^{\circ}, 72^{\circ}$; and measuring from 62° get the errors of 42° and 82°. Thus we have errors for every ten degrees from 32° to 92°, and it is only a matter of time and labour to continue the investigation to any extent; but the work is very tedious, and each part must be frequently repeated, as in spite of all precautions that can be devised discrepancies will present themselves.

By this process we find the errors of the different divisions with reference to the lines 32 and 212 . It remains to ascertain the accuracy of these two lines relatively to one another. For this purpose the thermometer is boiled at the standard barometric pressure, and within a few minutes afterwards, placed with its bulb in melting pounded ice, or snow. Let the readings be $212+b$ and $32+f$, then the correction to the reading of the Standard Thermometer at the temperature t is

$$
-\frac{t-32}{180}(b-f)
$$

The correction for the error of the alsolute position of the line 32 is determined from time to time, inasmuch as it is in all thermometers a somewhat variable quantity. At any given time, let $32+f^{\prime}$ be the rading of the Standard 'Thermeneter when placed in melting pounded ice, or snow, then the total correction is

$$
-f^{\prime}-{ }_{180}^{t-32}(b-f)+s
$$

where s is the correction resulting from the process of calibration.
It is almost unnecessary to remark that if the thermometer be boiled at a barometric pressure differing from the standard pressure, the reading of the thermometer is corrected accordingly.

III.

ON THE CHANGES OF FORM OF A BAR OF METAL CONSIDERED AS AN ELASTIC BODY.

If we suppose a bar of iron, steel, or any other suitable material to have a fine dot engraved upon one of its surfaces and close to either extremity, the distance of these dots from one another depends not ouly ou the temperature of the bar, but on the magnitude and directions of the forces by which the bar is held in its position under the microscopes which view the dots. These forces, or, in other words, the supports of the bar, may be varied, and hence a variation of length will result from the change of form due to the elasticity of the metal. The mode of supporting a measuring bar becomes, therefore, a matter of great importance. A considerable number of experiments on these variations of length were made by the late Mr. Baily, as recorded in the "Account of the Construction of the new National Standard of length and its principal Copies" pages 16 and 17, and it has been considered desirable to obtain further information on this point by very carefully conducted comparisons, and to compare the results obtained from such observations with those obtained from the ordinary theory of the flexure of elastic rods.

1.

Imagine an elastic rod or bar whose surfaces are perfect planes and its section a rectangle whose breadth is h and depth k; let also a be the length and w the weight of the bar. As only small forces are to be here considered, we shall assume that the extension and compression are equal for the same absolute amount of force. Let α be the exteusion of the bar when directly extended by a force equal to its weight u. So that a also represents the compression of the bar when compressed ly a force equal to w; then ρ a will be the extension or compression resulting from an extending or compressing force e $e t$.

Let $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}$ (fig. 1) represent the side elevation of a small portion of the har when

Fig. 1.

Fig. 2.
 lying on a horizontal plaue. $\mathrm{PQ}, \mathrm{P}^{\prime} \mathrm{Q}^{\prime}$ represent two planes very close to one another perpendicular to the bar's length, and parallel to one another; CC represents a horizontal plane equidistant from the planes $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$, the parallel lines $p p^{\prime}$ define a portion of the solid or a lamina contained between two horizontal planes indefinitely close together, the two vertical planes $\mathrm{PQ}, \mathrm{P}^{\prime} \mathrm{Q}$, and the two vertical bounding surfaces of the bar.
ligure 2 represeuts the same portion of the bar when curved in a vertical plane. We suppose the forces which produce the flexure to act upon the upper and under surfaces perpendicularly to those surfaces and equally over the whole breadth of those surfices, as for instance, if the bar be resting on two horizontal cylinders, whose axes are perpendicular to the direction of the bar's lenglh. As the flexure of the bar is always a very minute quantity, the force of gravity will also act in a direction seasibly perpendicular to the bar.

Take a point z on the surface of the bar, and suppose a plane to pass through this point perpendicular to the bar when straight. Then it is assumed that all the particles of the body which lie in this plane, will, when the bar is curved, continue to lie in a plane passing tbrough z, and perpendicular to the four surfaces of the bar. Consequently the particles of the body which in figure 1 lie in the planes $P P^{\prime} Q Q^{\prime}$ will, when the bar is curved, figure 2 , lie in the two planes $P P^{\prime} Q^{\prime}$ which converge to the centre of curvature O of the bar. The lamina $p p^{\prime}$ (figure 1) will become (figure 2) part of a cylindrical shell, and will be in a state of tension while any lamina $q q^{\prime}$ (figure 1) will become also a part of a cylindrical shell (figure 2), but in a state of compression. As a necessary consequence of the assumption that extension and compression are equal for the same amount of directly applied force, it follows that the extension of the upper surface PP^{\prime} and the compression of the lower QQ^{\prime} are cqual, and also that a lamina occupying the central position CC^{\prime} the neutral surface is neither extended nor compressed.

If ξ be the radius of curvature of CC^{\prime}, u the distance of $p p^{\prime}$ from CC^{\prime}, then the extension of $p p^{\prime}$ is

$$
\begin{equation*}
\varepsilon=\sigma \frac{u}{\rho} \tag{I}
\end{equation*}
$$

where σ is the original length of $p p^{\prime}$ or the distance of the parallel planes $\mathrm{PP}^{\prime}, \mathrm{QQ}^{\prime}$, figure 1. This formula evidently includes the case of compression for negative values of u. It is further assumed that the elastic forces developed in the plane $P^{\prime} Q^{\prime}$, and acting perpendicularly to this plane, are just such as produce the extensions expressed in formula (i). These forces are estimated as follows: Since the force w extends the bar whose length is a and area of section h / c to the amount α, it would extend a lamina whose thickness is δu, breadth l, and length σ to the amount

$$
\frac{\sigma}{a} \cdot \frac{k}{\delta u} \alpha
$$

Consequently the force necessary to extend this lamina to the amount ε is

$$
\frac{w a \leq}{k \sigma \alpha} \delta u
$$

and substituting from (1) the value of s, we get-

$$
\begin{equation*}
\frac{w a}{\rho_{\alpha} k} u \delta u \tag{2}
\end{equation*}
$$

for the force brought into play at p or p^{\prime} in the direction of the bars length. The resultant of these parallel forces or their sum over the whole sectional surface $\mathrm{P}^{\prime} \mathrm{Q}^{\prime}$ is

$$
\begin{equation*}
\frac{w a}{\rho \alpha k} \int_{-\frac{k}{2}}^{\frac{k}{2}} u d u=0 \tag{3}
\end{equation*}
$$

and this result is necessary for the equilibrium of the portion of the bar to the right of $\mathrm{P}^{\prime} \mathrm{Q}^{\prime}$, as the only forces by which it is solicited are perpendicular to its length. Further it is necessary for the equilibrium of the same portion of the bar that the sum of the moments of the applied forces with respect to C^{\prime}, should be equal to the sum of the moments of the elastic forces in $P^{\prime} Q^{\prime}$ round C^{\prime}. This latter sum is

$$
\begin{equation*}
\frac{w a}{v \alpha k} \int_{\frac{k}{2}}^{\frac{k}{2}} u_{2} d u=\frac{w a k^{2}}{12 \alpha q} \tag{4}
\end{equation*}
$$

so that when the forces which act perpendicularly upon the bar are given in magnitude and position, the radius of curvature of the neutral axis at any point will follow from (4).

2.

Let us now investigate the form assumed by an elastic rod resting upon two supports in

a horizontal line. Let $A B$ be the rod whose length is a and weight w, PP' the points of support at distances b and b^{\prime} from
the centre C of the bar. Let the equation of the curve be expressed in rectangular co-ordinates $x y$, the axis of x passing through the points of support, and $x=0$ corresponding to the centre of the bar. Now consider any point q of the bar between C and P^{\prime} and let $\mathrm{C} q=x$, the forces acting upon the portion $q \mathrm{~B}$ of the beam are, ist, the reaction of the support $\mathrm{P}^{\prime} ; 2 \mathrm{~d}$, the system of parallel forces constituting the weight of $q \mathrm{~B}$, and which may be replaced by their equivalent the weight acting at the middle point of $q B$, and the elastic forces brought into action in the section of the bar at q. The sum of the moments of the former forces round the point q is-

$$
\mathrm{P}^{\prime} \cdot q \mathrm{P}^{\prime}-\frac{q \mathrm{~B}}{\mathrm{AB}} w \cdot \frac{q \mathrm{~B}}{2}
$$

Now the reactions at \mathbf{P} and \mathbf{P} are

$$
\frac{b^{\prime} w}{b+b^{\prime}}, \frac{b w}{b+b^{\prime}}
$$

consequently the sum of the moments in question

$$
\begin{align*}
& =\frac{b w}{b+b^{\prime}}\left(b^{\prime}-x\right)-\frac{w}{2 a}\left(\frac{a}{2}-x\right)^{2} \\
& =\frac{w}{2}\left\{\frac{2 b b^{\prime}}{b+b^{\prime}}-\frac{a}{4}+\frac{b^{\prime}-b}{b^{\prime}+b} x-\frac{x^{2}}{a}\right\} \tag{5}
\end{align*}
$$

and this is equal to the sum of the moments of the elastic forces at the section q, consequently

$$
\begin{equation*}
\frac{a k^{2}}{6 \alpha} \cdot \frac{1}{\zeta}=\frac{2 b b^{\prime}}{b+b^{\prime}}-\frac{a}{4}+\frac{b^{\prime}-b}{b^{\prime}+b} x-\frac{x^{2}}{a} \tag{6}
\end{equation*}
$$

The right hand member of this equation is equivalent to

$$
\begin{equation*}
-\frac{1}{a}\left(x-\frac{a}{2} \cdot \frac{b^{\prime}-b}{b^{\prime}+b}\right)^{2}+2 b b^{\prime} \frac{b+b^{\prime}-\frac{a}{2}}{\left(b^{\prime}+b\right)^{2}} \tag{7}
\end{equation*}
$$

In order, therefore, that there be any points in the bar of no curvature, we have

$$
b+b^{\prime}>\frac{a}{2}
$$

that is unless the points of support are further apart than half the length of the bar, the whole bar will be convex upwards.

If one support be under one extremity of the bar and the other support at one third the bar's length from the other extremity, the bar will, for one half of its length, be convex upwards, and for the other half concave upwards; for if $b=\frac{a}{2} b^{\prime}=\frac{1}{6} a$ the expression (7) becomes-

$$
\left(x+\frac{a}{4}\right)^{2}-\frac{a^{2}}{16}
$$

which is manifestly negative from $x=0$ to $x=-\frac{a}{2}$ and positive from $x=0$ for any
positive value of x. It is, however, to be remembered, that the equation (6) represents only that part of the bar which lies between the points of support $P P^{\prime}$. For any point in $P^{\prime} B$ the moment of the forces is simply

$$
-\left(\frac{a}{2}-x\right)^{2} \frac{w}{3 a}
$$

consequently the equation of $P^{\prime} B$ is

$$
\begin{equation*}
\frac{a k^{4}}{6 a} \cdot \frac{1}{\rho}=-\frac{a}{4}+x-\frac{x^{2}}{a} \tag{8}
\end{equation*}
$$

As the co-efficient of $\frac{1}{\rho}$ in this equation is of frequent recurrence, we shall put

$$
\begin{equation*}
\frac{a k^{2}}{6 \alpha}=\frac{1}{\mu} \tag{9}
\end{equation*}
$$

Returning now to equation (6), and substituting for the radius of curvature its expression in x and y, we have

$$
\begin{gather*}
\frac{\frac{d^{2} y}{d x^{2}}}{\left(1+\frac{d y^{2}}{d x^{2}}\right)^{\frac{3}{2}}}=\mu\left(\frac{2 b b^{\prime}}{b+b^{\prime}}-\frac{a}{4}+\frac{b^{\prime}-b}{b^{\prime}+b} x-\frac{x^{2}}{a}\right) \\
\therefore \frac{\frac{d y}{d x}}{\left(1+\frac{d y^{2}}{d x^{2}}\right)^{\frac{1}{2}}}=\mu\left(\left[\begin{array}{ll}
\frac{2 b b^{\prime}}{b+b^{\prime}} & \frac{a}{4}
\end{array}\right] x+\frac{b^{\prime}-b}{b^{\prime}+\bar{b}} \frac{x^{2}}{2}\right. \tag{I0}\\
\left.\frac{x^{3}}{3 a}\right)+i
\end{gather*}
$$

where i is the value of the quantity $\frac{d y}{d x}\left(1+\frac{d y^{2}}{d x^{2}}\right)^{-\frac{1}{2}}$ when $x=0$.
From (10) we can express $\frac{d y}{d x}$ as a function of x, but it will be impossible to integrate the equation. This, however, is of no practical consequence for $\frac{d y}{d x}$ is so small a quantity that its cube may well be neglected, and we may put

$$
\begin{gather*}
\frac{1}{\mu} \cdot \frac{d y}{d x}=\frac{i}{u}+\left(\frac{2 b b^{\prime}}{b+b^{\prime}}-\frac{a}{4}\right) x+\frac{b^{\prime}-b}{b^{\prime}+b} \frac{x^{2}}{2}-\frac{x^{3}}{3^{a}} \tag{II}\\
\therefore \frac{y}{\mu}=\frac{b}{u}+\frac{i}{u} x+\left(\frac{2 b b}{b+b^{\prime}}-\frac{a}{4}\right) \frac{x^{2}}{2}+\frac{b^{\prime}-b}{b^{\prime}+b} \frac{x^{3}}{6}-\frac{x^{4}}{12 a} \tag{J2}
\end{gather*}
$$

where δ is the ralue of y, when $x=0$.
If in this equation we make first $x=b^{\prime}$, then $x=-b$, the corresponding values of y are each $=0$. Hence two equations from which δ and i may be expressed in known quantities ; the results are

$$
\begin{align*}
& \circ=\frac{i}{\mu}+\frac{b^{\prime}-b}{2}\left\{\frac{b^{2}+5 b b^{\prime}+b^{2}}{3\left(b+b^{\prime}\right)}-\frac{b^{3}+b^{\prime 2}}{6 a}-\frac{a}{4}\right\} \tag{13}\\
& \circ=\frac{\delta}{\mu}+\frac{b b^{\prime}}{2}\left\{\frac{b^{2}+4^{2 b b^{\prime}+b^{\prime 2}}}{3\left(b+b^{\prime}\right)}-\frac{b^{2}-b b^{\prime}+b^{2}}{6 a}-\frac{a}{4}\right\} \tag{14}
\end{align*}
$$

Let p^{\prime} be the value of $\frac{d y}{d x}$ at P^{\prime}, then from (II) and (13) we obtain, eliminating i,

$$
\begin{equation*}
\frac{p^{\prime}}{\mu}=\frac{b+b^{\prime}}{2}\left\{\frac{-b^{2}+2 b b^{\prime}-3 b^{\prime 3}}{6 a}+\frac{b+2 b^{\prime}}{3}-\frac{a}{4}\right\} \tag{15}
\end{equation*}
$$

Integrating twice equation (8) we have-

$$
\begin{align*}
& \frac{1}{\mu} \frac{d y}{d x}=\mathrm{C}-\frac{a}{4} x+\frac{x^{2}}{2}-\frac{x^{3}}{3 a} \tag{16}\\
& \frac{y}{\mu}=\mathrm{C}^{\prime}+\mathrm{C} x-\frac{a}{8} x^{2}+\frac{x^{3}}{6}-\frac{x^{3}}{\mathrm{I} 2 a} \tag{17}
\end{align*}
$$

putting in these equations $x=b^{\prime}$, the left hand members will become $\frac{p^{\prime}}{\mu}$ and o; thus we have two equations for determining C and C^{\prime}, and the values are

$$
\begin{align*}
\mathrm{C} & =\frac{b^{\prime}-b}{2}\left\{\frac{b^{2}+b^{\prime \prime}}{6 a}+\frac{a}{4}\right\}+\frac{b^{2}+3 b b^{\prime}-b^{3}}{6} \tag{18}\\
\mathrm{C}^{\prime} & =-\frac{b b^{\prime}}{2}\left\{\frac{3 b^{\prime}+b}{3}-\frac{a}{4}-\frac{b^{2}-b b^{\prime}+b^{2}}{6 a}\right\} \tag{19}
\end{align*}
$$

And finally the equations of the two curves are
Ist for Pl^{\prime} -

$$
\begin{align*}
& \frac{y}{\mu}=-\frac{b b^{\prime}}{2}\left\{\frac{b^{2}+4 b b^{\prime}+b^{\prime 2}}{3\left(b+b^{\prime}\right)}-\frac{b^{2}-b b^{\prime}+b^{2}}{6 a}-\frac{a}{4}\right\} \\
& -\frac{b^{\prime}-b}{2} \cdot\left\{\frac{b^{2}+5 b b^{\prime}+b^{2}}{3\left(b+b^{\prime}\right)}-\frac{b^{2}+b^{\prime 2}}{6 a}-\frac{a}{4}\right\} x \tag{20}\\
& \quad+\left\{\frac{b b^{\prime}}{b+b^{\prime}}-\frac{n^{\prime}}{8}\right\} x^{2}+\frac{1}{6}\left\{\frac{b^{\prime}-b}{b^{\prime}+b}\right\} x^{3}-\frac{1}{12 a} x^{4}
\end{align*}
$$

2d for P'B—

$$
\left.\begin{array}{c}
\frac{y}{\mu}=-\frac{b b^{\prime}}{2}\left\{\frac{b+3 b^{\prime}}{3}-\frac{b^{2}-b b^{\prime}+b^{2}}{6 a}-\frac{a}{4}\right\} \tag{2I}\\
+\frac{b^{\prime}-b}{2} \cdot\left\{\frac{b^{2}+3 b b^{\prime}-b^{2}}{3\left(b^{\prime}-b\right)}+\frac{b^{2}+b^{\prime 2}}{6 a}+\frac{a}{4}\right\} x-\frac{a}{8} x^{2}+x^{3}-\frac{1}{12 a} x^{4}
\end{array}\right\}
$$

It is almost unnecessary to remark that this last equation will, with the proper interchange of symbols, express the curve of AP.

3.

Let us now consider two particular cases; and first, when $b=b^{\prime}=0$: the case of bar supported at its centre. The equation is (21)

$$
\begin{equation*}
\frac{y}{\mu}=-\frac{a}{8} x^{2}+\frac{1}{6} x^{3}-\frac{1}{12 a} x^{4} \tag{22}
\end{equation*}
$$

This curve is wholly convex upwards. In order to ascertain how much the projection of the neutral axis upon a horizontal plane is shorter than the neutral axis itself, we must put

$$
\begin{align*}
& \quad s=2 \int_{0}^{\frac{a}{2}}\left(1+\frac{d y^{2}}{d x^{2}}\right)^{\ddagger} d x \\
& \therefore s-a=\int_{2}^{a} \frac{d y^{2}}{x^{2}} d x \tag{23}
\end{align*}
$$

11423.

Now

$$
\begin{align*}
\frac{d y}{d x}=\mu\left(-\frac{a}{4} x+\frac{1}{2} x^{2}\right. & \left.-\frac{1}{3 a} x^{3}\right) \tag{24}\\
\therefore s-a=\mu^{2}\left(-\frac{a}{4} x+\frac{1}{2} x^{2}\right. & \left.-\frac{1}{3 a} x^{3}\right)^{2} d x \\
& =\frac{\mu^{2} a^{5}}{14 \cdot 128} \\
& =\frac{36 a^{9} \alpha^{2}}{14 \cdot 128} \bar{k}^{4} \\
& =\frac{9}{448} \cdot \frac{a^{3} a^{2}}{k^{4}} \tag{25}
\end{align*}
$$

To take a particular example: Suppose a bar of iron 40 inches in length, an inch square in section, and weighing io lbs. The force necessary to extend such a bar the millionth part of its length is about 18 or say 20 lbs ; therefore the extension due to $w=10$ lbs. is,

$$
\alpha=\frac{40}{2000000} \text { inch. }
$$

Substituting this value, with $k=1$, in (25) we get for the apparent shortening of the neutral axis

$$
\frac{360}{448} \cdot\left(\frac{8}{10000}\right)^{2}=\frac{18}{35}\left(\frac{\text { inch }}{1000000}\right)
$$

or half a millionth of an inch: a quantity inappreciable in ordinary micrometer microscopes.
But if there be marks on the upper surface of the bar, one at each extremity, these marks will be separated by the extension of the upper surface to the amount - $k p$, where p is the value of $\frac{d y}{d x}$ at the extremities; now $k=1$ and p by (24) is,

$$
p=-\frac{\mu a^{2}}{24}
$$

Substituting the value of μ the extension becomes

$$
\begin{equation*}
\frac{a \alpha}{4} \tag{26}
\end{equation*}
$$

which in the particular case under consideration is the one five-thousandth part of an inch : being six or seven micrometer divisions-a very sensible quantity.

Again, consider the case of a bar supported at its extremities. The equation is obtained from (20) by making $b=\frac{a}{2}=b^{\prime}$

$$
\begin{align*}
& \frac{y}{\mu}=-\frac{5}{192} a^{3}+\frac{a}{8} x^{2}-\frac{1}{12 a} x^{4} \tag{27}\\
& \frac{1}{\mu} \frac{d y}{d x}=\frac{a}{4} x-\frac{1}{3 a} x^{3} \\
& s=2 \int_{0}^{a}\left(\mathrm{I}+\frac{d y^{2}}{d x^{2}}\right)^{\frac{1}{2}} d x=a+\int_{0}^{\frac{a}{2}} \frac{d y^{2}}{d x^{2}} d x
\end{align*}
$$

Consequently the difference between the length of the curve formed by the neutral axis and its horizontal projection is

$$
\begin{equation*}
\mu^{1} \int_{0}^{\frac{a}{3}}\left(\frac{a x}{4}-\frac{x^{3}}{3 a}\right)^{2} d x=\frac{17 \mu^{4} a^{3}}{32 \cdot 315} \tag{28}
\end{equation*}
$$

and substituting the value of μ this becomes

$$
\begin{equation*}
\frac{17 a^{3} u^{2}}{280} \tag{29}
\end{equation*}
$$

The value of this on the previous supposition of $a=40, k=\mathrm{I}$, is

$$
\frac{272}{175}\left(\frac{\text { inch }}{1000000}\right)
$$

something more than a millionth of an inch, a quantity not discervible in the ordinary micrometer microscopes.

In this position, being supported at the extremities, the upper surface of the bar is wholly concave, and in a state of compression ; consequently points upon its upper surface, and at the extreme ends of the bar, will be caused to approach each other by the quantity p, where p is the value of $\frac{d y}{d x}$; when $x=\frac{a}{2}$, this equals

$$
\begin{gather*}
\mu\left\{\frac{a^{2}}{8}-\frac{a^{2}}{24}\right\}=\frac{\mu a^{2}}{12} \\
=\frac{\alpha a}{2} \tag{30}
\end{gather*}
$$

Comparing this with (26) we see that if a bar be supported at its extremities the contraction of the upper surface between the extreme points is double the extension of the same upper surface when the bar is suspended from the centre. This result we shall see to be borne out by actual measure.

If the bar be supported, as is very common, on rollers at one fourth and three fourths of its length, the extension of the upper surface is

$$
\begin{equation*}
\frac{\alpha a}{16} \tag{31}
\end{equation*}
$$

a sensible quantity.
It appears, then, that by altering the points of support a bar may measure considerably longer or shorter than it would if laid upon a horizontal surface, and also that the alteration of length does not in any degree proceed from the yctual curving of the neutral axis, but from the direction of the tangents to this line at its extremities. If the bar be so supported that these tangents are parallel, there will be no alteration of the distance between points on the upper surface of the bar at its extremitics. By differentiating (2I) and putting $x=\frac{1}{2} a$, we get for the tangent of the direction of the neutral axis at B ,

$$
\begin{equation*}
\mu\left\{\frac{b^{2}+3 b b^{\prime}-b^{2}}{6}+\frac{b^{\prime}-b}{2}\left(\frac{b^{2}+b^{2}}{6 a}+\frac{a}{4}\right)-\frac{a^{3}}{24}\right\} \tag{32}
\end{equation*}
$$

and substituting b for b, and vice versut, we get the tangent of the direction of the other extremity of the axis; viz.,

$$
\begin{equation*}
\mu\left\{\frac{b^{3}+3 b b^{\prime}-b^{3}}{6}+\frac{b-b^{\prime}}{2}\left(\frac{b^{2}+b^{2}}{6 a}+\frac{a}{4}\right)-\frac{a^{3}}{24}\right\} \tag{33}
\end{equation*}
$$

The sum of these two is to be made zero ; that is,

$$
\begin{equation*}
b b^{\prime}-\frac{a^{y}}{12}=0 \tag{34}
\end{equation*}
$$

If this relation hold good between the distance of the supports from the centre of the bar, the distance between points engraved on its upper surface at its extremities will be the same as if the bar be lying on a horizontal plane. If the supports be equidistant from the centre, and therefore $b=\ell$,

$$
\begin{equation*}
b=\frac{a}{2 \sqrt{3}} \tag{35}
\end{equation*}
$$

This formula expresses the proper distance of the supports from the centre of the bar, in order that there may be no difference between the apparent length of the bar when so supported, and when lying on a horizontal plane; in other words, the total extension of the upper surface is zero, and the direction of the neutral axis at either extremity is horizontal. This result is due to the Astronomer Royal, and is a particular case of the following more general theorem : If a uniform bar be supported on n equidistant rollers, exerting equal pressure upwards (as in the lever system), and if the distance apart of the rollers be

$$
\frac{4}{\sqrt{n^{2}-1}}
$$

the total extension of the upper surface between its extreme points is zero. (See Memoirs of the Royal Astronomical Society, Vol. XV.)

From (34) we learn further that if a bar supported on two rollers at the distance expressed in (35) be slightly displaced by rolling a small distance to the right or left, the effect will be immaterial.

In general, from the sum of (32) and (33) multiplied by $\frac{1}{3} k$, we have the following: If a bar be supported at two points whose distances on either side of the centre are b, b, the total extension of the upper surface is

$$
\begin{equation*}
\frac{\alpha a}{k}\left\{\frac{1}{4}-3 \frac{b b^{\prime}}{a^{2}}\right\} \tag{36}
\end{equation*}
$$

where a is the length, and k the depth of the bar, and a the small quantity by which the bar would be elongated or compressed by the direct action of a force equal to its own weight.

4.

Let us now consider the result of a pressure applied in a vertical direction to a given point in the upper surface of the bar. Let AB be the bar

A	C	D	B
P			Q

$$
\begin{aligned}
\mathrm{P}+\mathrm{Q} & =w+\theta w \\
-\mathrm{P}+\mathrm{Q} & =\theta w \frac{v^{\prime}}{b}
\end{aligned}
$$

from which

$$
\begin{align*}
& \mathbf{P}=\frac{1}{2} w+\frac{1}{2} \theta w\left(1-\frac{b^{\prime}}{b}\right) \tag{37}\\
& \mathbf{Q}=\frac{1}{2} w+\frac{1}{2} \theta w\left(1+\frac{b^{\prime}}{b}\right) \tag{38}
\end{align*}
$$

For any point in PD the sum of the moments of the bending forces is

$$
\begin{gathered}
-\theta w\left(b^{\prime}-x\right)+\mathrm{Q}(b-x)-\frac{w}{2 a}\left(\frac{a}{2}-x\right)^{2} \\
=\frac{A w}{2}\left(l-l^{\prime}\right)+\frac{w}{2}\left(b-\frac{a}{4}\right)+\frac{f w}{2}\left(1-\frac{b}{b}\right) x-\frac{w}{2 a} x^{2}
\end{gathered}
$$

and for any point in DQ the sum of the moments is

$$
=\frac{g_{u \prime}}{2}\left(b+b^{\prime}\right)+\frac{w}{2}\left(b-\frac{a}{4}\right)-\frac{\theta_{w}}{2}\left(1+\frac{b^{\prime}}{b}\right) x-\frac{w}{2 a} x^{2}
$$

Hence the differential equations of the two curves PD and DQ are :

$$
\begin{align*}
& \frac{1}{\mu} \frac{d^{2} y}{d x^{2}}=\theta\left(b-b^{\prime}\right)+b-\frac{a}{4}+\theta\left(1-\frac{b}{b}\right) x-\frac{x^{2}}{a} \tag{39}\\
& \frac{1}{\mu} \frac{d^{2} y}{d x^{2}}=\theta\left(b+b^{\prime}\right)+b-\frac{a}{4}-\theta\left(1-\frac{b^{\prime}}{b}\right) x-\frac{x^{2}}{a} \tag{40}
\end{align*}
$$

Integrating once we have-

$$
\begin{align*}
& \mathrm{PD} \ldots \frac{1}{\mu} \frac{d y}{d x}=\mathrm{C}+\left(b+\theta b-G b^{\prime}-\frac{a}{4}\right) x+\frac{\theta}{2}\left(1-\frac{b^{\prime}}{b}\right) x^{2}-\frac{x^{3}}{3 a} \tag{4I}\\
& \mathrm{DQ} \ldots \frac{1}{\mu} \frac{d y}{d x}=\mathrm{C}^{\prime}+\left(b+6 b+\theta b^{\prime}-\frac{a}{4}\right) x-\frac{\theta}{2}\left(1+\frac{b^{\prime}}{b}\right) \cdot x^{2}-\frac{x^{3}}{3 a} \tag{42}
\end{align*}
$$

The difference of these equations being zero for $x=b$, we get by substituting this value of x,

$$
\begin{equation*}
\mathrm{C}-\mathrm{C}^{\prime}=\theta b^{\prime} \tag{43}
\end{equation*}
$$

and integrating a second time-

$$
\begin{align*}
& \mathrm{PD} \ldots \frac{y}{\mu}=\mathrm{C}+\mathrm{C} x+\frac{1}{2}\left(b+\theta b-\theta b^{\prime}-\frac{a}{4}\right) x^{4}+\frac{\theta}{6}\left(\mathrm{1}-\frac{b^{\prime}}{b}\right) x^{4}-\frac{x^{4}}{12 a} \tag{44}\\
& \mathrm{DQ} \ldots \frac{y}{\mu}=\mathrm{C},+\mathrm{C}^{\prime} x+\frac{1}{2}\left(b+\theta b-\theta b^{\prime}-\frac{a}{4}\right) x^{2}-\frac{\theta}{6}\left(\mathrm{I}-\frac{b^{\prime}}{b}\right) x^{2}-\frac{x^{4}}{12 a} \tag{45}
\end{align*}
$$

the difference of these equations is zero for $x=t$, and hence

$$
\begin{equation*}
\mathbf{C},-\mathrm{C}_{\prime}^{\prime}=-\frac{1}{3} 6 b^{\prime 3} \tag{46}
\end{equation*}
$$

Also from (44), (45), making $x=-b$ and $x=b$, we have two equations which, taken with (43) and (46), determine the values of C, C, C C'. They are as follows:-

$$
\begin{align*}
& \mathrm{C}=\theta b^{\prime} b^{\prime}\left\{-\frac{1}{3}+\frac{1}{2} \frac{b^{\prime}}{b}-\frac{1}{6} \frac{b^{\prime 2}}{b^{2}}\right\} \tag{47}\\
& \mathrm{C}^{\prime}=\theta b^{\prime}\left\{-\frac{1}{3}-\frac{1}{2} \cdot \frac{b^{\prime}}{b}-\frac{1}{6} \cdot \frac{b^{2}}{b^{2}}\right\} \\
& \mathrm{C}=\frac{b^{3}}{2}\left\{\frac{a}{4}-b\left(1+\frac{2}{3} \theta\right)+\frac{b^{2}}{6 a}\right\}+\frac{b^{\prime 3}}{2} \theta\left(b-\frac{1}{3} b^{\prime}\right) \\
& \mathrm{C}^{\prime}=\frac{b^{2}}{2}\left\{\frac{a}{4}-b\left(1+\frac{9}{3} \theta\right)+\frac{b^{2}}{6 a}\right\}+\frac{b^{\prime 2}}{2} \theta\left(b+\frac{1}{3} b^{\prime}\right)
\end{align*}
$$

Let q and p represent the values of $\frac{d y}{d x}$ at the points of support Q and P respectively, then if in (41) and (42) we put $x=-b$ and $x=b$ respectively, and take the difference, we get

$$
\begin{equation*}
\frac{q-p}{\mu}=\theta\left(b^{2}-b^{\prime 2}\right)-2 \cdot \frac{b}{a}\left(\frac{a^{2}}{4}-a b+\frac{b^{2}}{3}\right) \tag{48}
\end{equation*}
$$

consequently the compression of the upper surface between P and Q is

$$
\begin{equation*}
\frac{3 \alpha \theta}{a k}\left(b^{9}-b^{\prime 2}\right)-\frac{6 \alpha b}{a^{2} k}\left(\frac{a^{9}}{4}-a b+\frac{b^{2}}{3}\right) \tag{49}
\end{equation*}
$$

the effect of the pressure alone being

$$
\begin{equation*}
\frac{3 a \theta}{a k}\left(b^{2}-b^{2}\right) \tag{50}
\end{equation*}
$$

Let us next ascertain the effect of the pressure in shortening (through its curvature) the horizontal projection of the neutral axis of the bar. Let us suppose the pressure to be applied at the centre so that $b^{\prime}=0$, and suppose the bar supported at its extremities so that $b=\frac{1}{2} a$. In this case one equation will express the whole curve of the bar: this equation is-

$$
\begin{align*}
& \quad \frac{y}{\mu}=-\frac{a^{3}}{8}\left(\frac{5}{24}+\frac{\theta}{3}\right)+a\left(\frac{1}{8}+\frac{\theta}{4}\right) x^{2}-\frac{\theta}{6} x^{3}-\frac{x^{4}}{12 a} \tag{5I}\\
& \text { or, } \quad \frac{1}{\mu} \frac{d y}{d x}=a\left(\frac{1}{4}+\frac{\theta}{2}\right) x-\frac{\theta}{2} x^{2}-\frac{1}{3 a} x^{3} \\
& \\
& \frac{d y^{2}}{d x^{2}}=\frac{\alpha^{2}}{k^{4}}\left\{\left(\frac{3}{2}+3 \theta\right) x-\frac{3 \theta}{a} x^{2}-\frac{2}{a^{2}} x^{3}\right\}^{2}
\end{align*}
$$

and the difference of length between the vertical axis and its projection will be-

$$
\begin{align*}
& \frac{\alpha^{2}}{\overline{k^{4}}} \int_{0}^{a}\left\{\left(\frac{3}{2}+3 \theta\right) x-\frac{3}{a} x^{2}-\frac{2 x^{3}}{a^{2}}\right\}^{2} d x \\
& \quad=\frac{a^{2} a^{3}}{8 k^{4}}\left\{\frac{34}{70}+\frac{6 \mathrm{I}}{40} \theta+\frac{6}{5} \theta^{2}\right\} \tag{52}
\end{align*}
$$

To take a particular case : suppose, as before, $a=40, k=1$,

$$
\alpha=\frac{20}{1000000}
$$

the weight of the bar being 10 lbs., and let the pressure applied at the centre be also 10 lbs., so that $\theta=1$. Then by (52) the shortening of the bar through direct curvature

$$
=\frac{899}{7} \frac{8}{100000000}=\frac{\text { inch }}{100000}
$$

which is about a third of a division in ordinary micrometer microscopes, -a quantity only just visible.

But the contraction of the upper surface resulting from the pressure at the centre is by (50)

$$
\frac{3 \alpha n}{4}=\frac{6 \text { inch }}{10000}
$$

which is about 20 divisions.

5.

In order to ascertain to what extent the results obtained in the preceding sections agree with observations, experiments were made on three bars of iron, of which the following are the descriptions :-
I. Cast-iron bar marked Q; the faces severally marked I, II, III, IIII. The section is a rectangle; the breadth of the faces I, and III, is 0.988 inch, and that of the faces II, IIII, is 0.986 inch, the length is 40.30 inches. The faces were carefully planed and polished. The bar was cast at an inclination of 45° to the horizon; the casting is not absolutely perfect, there being a small hole in one of the faces. The weight of this bar is 10. 16 lbs.
2. Cast-iron bar marked R; the faces severally marked I, II, III, IIII, the section is a square; the breadth of each face is 0.990 inch, and the length is 40.30 inches. The faces are carefully planed and polished. The bar was cast in a horizontal position, and is, though a good casting, less perfect than Q. The weight is 10.19 lbs.
3. Wrought Swedish iron bar marked S. The faces carefully planed and polished are marked I, II, III, IIII, the section is a rectangle; the breadth of faces I, and III, is 0.992 inch, and that of faces II, IIII, is 0.957 inch; the length is 40.30 inches and the weight 10.87 lbs . The material is of very excellent quality, and has the appearance of steel.

The method of conducting the experiment was this-
$A B$ is an elastic bar having under it four supports $P Q Q^{\prime} \mathrm{P}^{\prime}$ capable of motion in a
 vertical direction only. In the upper figure the outer supports PP^{\prime} are raised and the inner supports QQ^{\prime} withdrawn from below, so that the bar rests only on PP'. If the outer supports be now lowered and the inner raised we have the state represented in the lower figure, where the outer supports are withdrawn, and the bar is carried by the inner supports only. $\mathrm{A} m \mathrm{~B} m^{\prime}$ rn r'n' are perpendiculars raised from the surface of the bar and rigidly connected with it, so that when the bar is bent the perpendiculars remain constnatly at right angles to the bar at their base. These perpendiculars are of wire secured to the surface of the bar, and on the top of each a fine dot is engraved. It will be seen that the distance of these dots at $m n n^{\prime} m^{\prime}$ will vary considerably more than corresponding points on the surface of the bar. If p be the length of the perpendiculars, k the depth of the bar, then the effects of flexure in $A B$ are increased in the proportion of $p+\frac{1}{2} k: \frac{1}{2} k$. Over the points $m n n^{\prime} m^{\prime}$ are adjusted micrometer microscopes, and by these are actually measured the changes of length of $m m^{\prime} m n^{\prime} n m^{\prime}$ as the supports are altered. 'The supports QQ^{\prime} are equidistant from the centre, and the bar may rest in four different ways, viz., on

$$
\mathrm{PP}^{\prime}, \mathrm{PQ}^{\prime}, \mathrm{QP}^{\prime}, \mathrm{QQ}^{\prime}
$$

It is essential to the obtaining of trustworthy results, that the transfer of the bar from one pair of rollers to another be easily accomplished, that is, without the bar being handled; this will be effected if we are able to raise or lower any of the rollers without touching the bar.

Each of the rollers actually employed is a cylinder of brass, an inch long and an inch in diameter, having a small flange to prevent the bar slipping off, not however exactly a
cylinder, as two of them are slightly concave, and the other two slightly convex or barrel shaped, the object of this being that the bar may always get a true bearing or be supported on three points. The rollers are mounted each in a small brass frumework, in such a manner that by the turning of a vertical screw nnf (see Figure 7, Plate VI.) the roller k is drawn upwards or let down. The screw is of fine thread, and great pains were taken in the construction to make the roller firm and free from all shake, while its motion by means of the milled-headed screw is easy.

The roller frames are screwed down in any required position in the bottom of a box specially made for these experiments. The length of the box is four feet; along each of the inner sides is marked a scale of inches and parts, so that the rollers may be placed with great accuracy at any required distances from the centre of the bar. The two essential points of the adjustment of the rollers are that they be all four truly in line, and that the axis of each be truly perpendicular to that line. They are then firmly screwed down to brass plates in the bottom of the box. The latter rests on the camels of the comparison apparatus, and so can be adjusted laterally or longitudinally under the microscope.

Four microscopes were arranged in line over the bar; the distance of the outer microscopes H, K was exactly 40 inches from centre to centre. The inner microscopes A, C were 20 inches apart
 from centre to centre, each being midway between the centre of the bar, and one of its extremities The microscopes were carefully aligned, and their axes made truly vertical.

The perpendiculars to the surface of the bar were affixed as in the annexed figure, where Q represents the bar in end elevation, efgh a piece of brass nearly fitting three sides of the bar, but allowing a little transverse play. It can be fixed and held tight by the four small screws when adjusted into line. To the upper surface of this brass is rigidly fixed in a vertical position a piece of iron wire, and on the top of this wire a piece of platinum is let in. On the platinum is engraved a fine dot. Four of thesc perpendiculars are attached to the bar at distances of 10 and 20 inches precisely on either side of the centre; thus the outer ones are each 0.15 of an inch from the extremity of the bar, the length of which is 40.30 inches.
The supportiug rollers were placed at various times in the following positions :-
I. At 20 inches left and right of the centre ; the supports so placed are designated EE' respectively.
2. At 2 inches left and right of the centre ; designated CC^{\prime}.
3. At $1 r^{6}{ }_{3}$ inches left and right of the centre; designated NN^{\prime}, this being the normal position for two supports computed from the formula (35).
4. At $6 \cdot 72$ inches left and right of the centre; designated SS^{\prime}, being one sixth the length of the bar distant from the centre.
The bar was not observed in these positions only, but on unsymmetrically placed supports. For instance, suppose the four rollers are fixed in the positions ESS'E' (the accented letters invariably denote supports to the right of the centre), then the bar is compared with itself in four different positions :-

Ist on	EE
2d ,	SS
3d "	ES'
$4^{\text {th }}$,	SE'

and it has been shown that in these last two positions the bar is for one half concave, and the other half convex.

6.

On referring to the figures, page 31 , it will be seen that the displacement of the top of a perpendicular is -

$$
\left(p+\frac{1}{2} k\right) \frac{d y}{d x}
$$

where p is the length of the perpendicular and $\frac{d y}{d x}$ the inclination of the bar at the base of the perpendicular. The actual length of the perpendiculars employed is two inches precisely, hence the displacement is-

$$
\left(2+\frac{1}{2} k\right) \frac{d y}{d x}
$$

If we differentiate the equations 20 and 2 I , substituting the proper value of a, b, b, we get for that portion of the bar which includes its centre, the following values of $\frac{1}{\mu} \frac{d \prime \prime}{d x}$ for Io different dispositions of the supports.

and for the portion of the bar to the right of the right support, or to the left of the left support (after the proper change of sign) :

CC^{\prime}	$+2.00-10.0750 x+50000 x^{2}-008272 x^{3}$
NN^{\prime}	$+67.67-10.0750 x+50000 x^{2}-{ }^{0} 008272 x^{3}$
EE'	+ 20000-10.0750x+ $50000 x^{3}-0008272 x^{3}$
NO^{\prime}	- 17779-10.0750 $x+50000 x^{2}-{ }^{\text {- }} 0008272 x^{3}$
CN^{\prime}	$+41.04-10.0750 x+50000 x^{2}-{ }^{\circ} 008.272 x^{9}$
EN'	$+109.00-10.0750 x+50000 x^{2}-{ }^{\circ} 008272 x^{3}$
$\mathrm{NE}^{\prime \prime}$	+ $123.60-10.0750 x+50000 x^{2}-{ }^{\circ} 008272 x^{9}$
SS'	$+22.56-10.0750 x+.50000 x^{2}-008272 x^{3}$
ES'	$+4^{-17}$ - $10.0750 x+\cdot 50000 x^{2}-0008272 x^{\text {a }}$
SE'	+ 87.16-10.0750 $x+50000 x^{2}-0008272 x^{3}$

The quantities obtained from this table by making $x \pm 10$ and ± 20, will, when multiplied by $\mu\left(2+\frac{1}{2} k\right)$ or (equation 9) by-

$$
\begin{equation*}
\frac{3 a}{a k^{9}}(4+k) \tag{53}
\end{equation*}
$$

give the disturbances of the tops of the perpendiculars.

The numerical quantities to be multiplied by (53) are found to be-

Supports.	m	n	n^{\prime}	m^{\prime}
CC^{\prime}	- 65.68	- 57.02	$-57^{\circ 2}$	- 65.68
NN^{\prime}	- 0.01	+ $7 \cdot 28$	+ 7.28	- 0.01
EE^{\prime}	+ 13232	+ 90.98	+90.98	$\begin{array}{r}132.32 \\ +\quad 3.37 \\ \hline\end{array}$
NCN^{\prime}	- 26.64 $=\quad 85.47$		- 76.81 -18.38	$\begin{array}{r}+\quad 85.47 \\ -\quad 26.64 \\ \hline\end{array}$
EN^{\prime}	+ 559.93	+ 27.82	+ 48.30	+ $41 \cdot 32$
NE^{\prime}		+ $\mathbf{4}^{8 \cdot 30}$	+ 27.82	+ 55.93
SS'	- $45 \cdot 12$	- $36 \cdot 46$	- 36.46	$\begin{array}{r} \\ -\quad 45.12 \\ \hline\end{array}$
$\mathrm{SE}^{\text {ES }}$	+ 19.48 $+\quad 20.51$	$\begin{array}{r}\text { (} \\ \hline\end{array}$	$\begin{array}{r}\text { [18.85 } \\ \hline+\quad 300\end{array}$	
	- 2051	- 1185	+ 30	+ ${ }^{+} 48$

The disturbances are measured, positively, inwards towards the centre of the bar. The columns $m, n, n^{\prime}, m^{\prime}$, refer to the perpendiculars so marked, in order from left to right in the figure, page 3 I .

If [m, m^{\prime}] signify the diminution of distance of the tops of the two outer perpendiculars when the bar is supported on two given supports, as compared with their distance when the
 distances $m n^{\prime}, n m^{\prime}$, then their actual values will be as follows :-

Supports.	[$m n^{\prime}$ ' $]$	[$m m^{\prime}$] $]$	[$n m^{\prime}$]
CC^{\prime}	- 122.70	$-131 \cdot 36$	- 122.70
NN'	+ 727	- 0.02	+ 7.27
EE'	+ 223.30	+ 264.64	+ 22330
NC^{\prime}	- 10345	- 112.11	- 103.85
CN^{\prime}	- 103.85	- 112.11	- 103.45
EN'	+ 104.23	+ 97.25	+69.14
NE^{\prime}	+69.14 $+\quad 81$	+ 97.25	+ 104.23
SS'	- 81.58	- 90.24	- 81.58
ES^{\prime}		- 1.03	- 17.51
SE'	- 1795	- 1.03	+ 7.63

where each quantity is to be multiplied by-

$$
\frac{3^{\alpha}(4+k)}{a k^{2}}
$$

7.

The first observations were made on Q. The section of this bar may be taken as a square, the difference of the faces being very minute; also $k=0.987$.

The method of procedure is as follows :-the bar resting on NN^{\prime} is made level by the elevation or depression of the supporting rollers NN^{\prime}; the microscopes are then adjusted over the dots (which have themselves been carefully aligned), their axes made vertical, and the micrometer screw adjusted carefully parallel to the length of the bar. In each
position of the bar the four microscopes are read twice, viz., in the order $\mathrm{H}, \mathrm{A}, \mathrm{C}, \mathrm{K}$, $\mathrm{K} \mathrm{C}, \mathrm{A}, \mathrm{H}$. The values of one division of the micrometer in these microscopes are, in millionths of a yard,

for H	9
A	1-177
C	0.869
K	0.7980

The observations in a single visit to the bar-room are recorded as followe:-

Rollers.	H m	A n	C n^{\prime}	K m^{\prime}
$\mathrm{E}^{\prime} \mathrm{E}^{\prime}$	d	d	d	d
	$76 \cdot 6$	35'4	$59^{\circ} 6$	95.5
	$76 \cdot 8$	$3{ }^{6} 3$	$60 \cdot 5$	$96+$
CC^{\prime}	$20 \cdot 7$	$6 \cdot 6$	$3 \cdot 3$	19.6
	19.9	$6 \cdot 4$	$3 \cdot 5$	19.3
EE ${ }^{\prime}$	86.4	$43 \cdot 6$	52.2	88.5
	$86 \cdot 5$	43.4	$52^{\circ} \mathrm{O}$	$87 \cdot 4$
CC^{\prime}	21.5	$5 \cdot 5$	3.5	19.5
	$20 \cdot 7$	$5 \cdot 3$	3.4	$19^{\circ}+$

The microscopes being once adjusted to focus are not again altered, but in every case the dots are brought by the elevation or depression of the supporting rollers into the focus of the microscope. It is evident there must be always a slight error in focus to be dispersed among the dots on account of the flexure of the bar, the foci of the microscopes remaining in a fixed and horizontal straight line. The flexure of the bar, however, is not of sufficient magnitude to cause much trouble to the observer, though it is quite perceptible.

The following results are the means of four comparisons one on each fuce, expressed in millionths of a yard. $\Delta\left[\mathrm{mm}^{\prime}\right]$ means the variation in the distance of the dots $m, \boldsymbol{m}^{\prime}$, corresponding to the change of supports specified in the left-hand column of the table.

The following sets of comparisons are with the face marked IIII uppermost.

Sct.	Change of Supports		$\Delta\left[m n^{\prime}\right]$	$\Delta\left[m m^{\prime}\right]$	$\Delta\left[n m^{\prime}\right]$	$\begin{gathered} \text { No. of } \\ \text { Comparisons. } \end{gathered}$
	fron	10				
1	CC'	EE'	93.8	107.0	97.4	8
2	"	"	$92 \cdot 5$	$104 \cdot 9$	98.3	10
	"	"	93.2 93 93	107.3 106.7	98.2.	8
4	"	",	93.9 93	106.7 1064	94.1 92.8	10 12

On the completion of the first set in this table it was observed that unsymmetrical results were being obtained, inasmuch as we should expect to find $\Delta[\mathrm{mn}]=\Delta[\mathrm{mm}]$. This might be explained by supposing one end of the bar less flexible than the other; consequently further series of comparisons were made with the view of ascertaining, by the reversal of the bar, the real cause of the discrepancy. In the second set, the end of the bar marked Q was, as in the first set, to the left. In the third set, the end marked \mathbf{Q} was reversed, and placed to the right. The same peculiarity in the result still remains, as though the left end of the bar were less flexible; we have for $\Delta\left[m n^{\prime}\right] 93^{\circ} 2$ and for $\Delta\left[\mathrm{nm}^{\prime}\right] 98.2$. It is therefore clear that the discrepancy is not in the iron, as we should have found it reversed on reversing the bar, which is not the case. Nor can the cause be sought in mere errors of observation ; the testimony of the individual comparisons in each of the three first sets is uniform. Nor is it any peculiarity of an observer, as three different observers made the comparisons in regular routine. It is difficult to account for any unsymmetrical result, as there is nothing unsymmetrical in the apparatus or mode of observing, with this exception, that the rollers under the left half of the bar are concave, while those on the right are convex ; so that on the left the bar is supported towards its outer edges, while on the right the contact of the supporting roller is at the centre of the breadth of the bar. The friction of the rollers is, through special attention in their construction, the least possible. The force which will just move the bar on its rollers is between four and six ounces.

Previous to the commencement of the set marked 4, a slight inclination in the direction of the micrometer screw of the right hand microscope to the true line of measurement was detected and adjusted.

In the fourth set, the mark Q was to the right, and in the fifth, Q was to the left. In these two sets the results are perfectly satisfactory. But the disappearance of the anomalous results is certainly not to be explained by the adjustment just referred to, as that cause is quite insufficient; moreover, it is only a temporary disappearance, as we shall see.

We shall reject the sets marked $1,2,3$, in this table, and retain as the final result, the mean of the last two ; viz.:-

Change of Supports.	$\Delta\left[m n^{\prime}\right]$	$\Delta\left[m m^{\prime}\right]$	$\Delta\left[n m^{\prime}\right]$	Number.
CC^{\prime} to EE^{\prime}	93.5	106.5	93.4	22 comparisons.

If we now compare these observed changes of length with those obtained from the table (54), we can by the method of lenst squares obtain the value of the multiplier; the result is

$$
\begin{aligned}
\frac{3 \alpha(4+k)}{a k^{2}} & =0.2714 \\
\therefore \alpha & =0.7121
\end{aligned}
$$

where α is the extension or compression of the bar Q under a force equivalent to its own weight (10.16 lbs.), and expressed in millionths of a yard.

This being the measure of elasticity of the bar, the observed and computed variations of length will stand as in the following table :-

Changes of Supports		$\Delta\left[m \prime^{\prime}\right]$		$\Delta\left[m m^{\prime}\right]$		$\Delta\left[m m^{\prime}\right]$	
from	to	Observed.	Computed.	Observed.	Computed.	Observed.	Computed.
N ${ }^{\prime}$	EE'	$57 \cdot 8$	$5^{8 \cdot 6}$	70'7	$71 \cdot 8$	60%	$5^{8 \cdot 6}$
"	EN'	$25^{\circ} \mathrm{O}$	26.3	25.9	26.4	1%	16.8
"	NE^{\prime}	16.4	16.8	$26 \cdot 8$	26.4	28.5	$26 \cdot 3$
"	CC^{\prime}	$-3^{6 \cdot 2}$	-35.3	$-35 \cdot 8$	-35%	$-35 \cdot 7$	- 353
"	NC^{\prime}	-31.8	- 30.0	-31.8	-30%	$-32 \cdot 2$	- 30.1
	CN^{\prime}	-31.7	-30.1	-31.8	$-30 \% 4$	-32.4	-30%
CC	EE'	93.5	93.9	$106 \cdot 5$	107.5	93.4	93.9

8.

In the bar R, cast in a horizontal position, $k=0.990$ inch ; the section being very accurately a square.

Two series of 8 and io comparisons respectively give for the change from CC^{\prime} to EE^{\prime} (face I uppermost.)

$\Delta\left[m n^{\prime}\right]$	$\Delta\left[m m{ }^{\prime}\right]$	$\Delta\left[n m^{\prime}\right]$
91.2	10.54	$95 \cdot 6$
92.7	$10{ }^{\circ} 8$	96.0

Here we have again, with a different bar, the anomaly of $\Delta\left[m n^{\prime}\right]<\Delta\left[n m^{\prime}\right]$. The observations themselves are satisfactory enough. In a third series of 14 comparisons on the same face, the anomaly almost disappears. We have, -

$\Delta\left[m n^{\prime}\right]$	$\Delta\left[m m^{\prime}\right]$	$\Delta\left[\mathrm{mm}^{\prime}\right]$
92.6	104.5	93.3

We shall take this to be the true representation of the effect of flexure.
With face I uppermost the bar was compared in its different positions on $\mathrm{E}, \mathrm{S}, \mathrm{S}^{\prime}, \mathrm{E}^{\prime}$, seven comparisons; and with the opposite face III uppermost, five comparisons on the
same rollers. On comparing the observed and theoretical changes of length, we get for the multiplier,-

$$
\begin{gathered}
\frac{3 \alpha(4+k)}{u k^{2}}=\cdot 2652 \\
\alpha=\cdot 6997
\end{gathered}
$$

This being the measure of elasticity of R, the observed and computed changes of length will stand as in the following table :-

$\begin{aligned} & \text { Face } \\ & \text { of } \\ & \text { Bar. } \end{aligned}$	Changes of Supports		$\Delta\left[m n^{\prime}\right]$		$\Delta\left[m m^{\prime}\right]$		$\Delta\left[n m^{\prime}\right]$	
	from	to	Observed.	Computed.	Observed.	Computed.	Olserved.	Computed.
I	EE'	SS'	$-82 \cdot 3$	$-80^{\circ} 9$	- 94.5	- 94*1	- 79.4	-80.9
"	"	ES'	$-5^{8.8}$	-57%	- 714	- 70.4	-62.8	-63.9
		SE^{\prime}	-63.5	-63.9	- 70.0	- 70.	- 5.5 .2	- 57.2
III	EE ${ }^{\prime}$	$\mathrm{SS}^{\prime \prime}$	-82.5	-80.9	- 95 ${ }^{\circ}$	- 9+.1	-80.7	-80.9
"	"	ES'	$-59^{\circ} 3$	$-.572$	- 71.8	- $70 \cdot+$	-643	-63.9
I		SE^{\prime}	-65%	-03.9	-71\%	- $70{ }^{\circ} 4$	$-5^{8 \cdot 1}$	- 57.2
I	CC	EE'	+92.6	+91-8	+ $10+5$	+ 105°	+ 93.3	+91.8

In order more satisfactorily to test the hypothesis of the equality of expansion and contraction of the material under the same directly applied force, or in other words to test the centrality of the neutral axis, the following experiment was made :-The bar resting on the extreme supports EE , a weight of 9.45 lbs . was placed on the centre of the bar (covering just one square inch of the bar's surface), and the resulting variation in length repeatedly observed. With the face II. uppermost, the contraction of the distance between the tops of the outer perpendiculars, -

$$
\Delta\left[m m^{\prime}\right]=96 \cdot 34
$$

with the opposite face IIII uppermost, there resulted, -

$$
\Delta\left[\mathrm{mm}^{\prime}\right]=96 \cdot 58
$$

Observations were then made upon a point two inches below the under surface of the bar to ascertain the extension of the under part of the bar, when weighted at the centre.

This was effected as follows:-Into the end of the bar
 was screwed firmly a piece of wire, bent into the form shown in the annexed figure, where R is the extremity of the bar, and E^{\prime} the right supporting roller. 'The lower part of the wire being bent in a horizontal direction, carried a small disk of platinum with an engraved dot at precisely 2 inches below the under surface of the bar. The microscopes being adjusted over these points, one at each extremity of the bar, the observations were proceeded with as before. The increase of length produced by the weight being placed on the centre of the bar (face I uppermost) is, from 5 comparisons,

$$
\Delta\left[m m m^{\prime}\right]=96.00
$$

where as the contraction for the points above the surface we have found from the mean of the observations on faces II and III to be,-

$$
\Delta\left[\mathrm{mm}^{\prime}\right]=96 \cdot 46
$$

This satisfactorily establishes the position of the neutral axis as at the centre of the bar.

The observed variations of the distance of the upper dots mm^{\prime} when the weight is placed on different points of the bar's length is shown in the following table:-

On extreme Supports E E'

Face of Bar uppermost.	Position of weight.				
	Centre.	5 in. left of $c \in a t r e$.	5 in. right of centre.	10 is. left wi centre.	11 in. right of centre.
II	$96 \cdot 34$	90\%7	90.6	$7{ }^{\text {²7 }}$	7-9
IIII	$96 \cdot 58$	$90 \cdot 8$	$90 \cdot 8$	73°	72.4

Now from (48) it appears that if a bar be resting on supports at the distances $\pm b$ from the centre, and if a pressure $=\theta \times$ (weight of the bar) be applied at a distance $\pm b^{\prime}$ from the centre, the effect upon points elevated to the height p above the surface of the bar at the distances $\pm b$ from the centre is, -

$$
\begin{gather*}
\mu \theta\left(p+\frac{1}{2} k\right)\left(b^{2}-b^{2}\right) \\
\text { or,-- } \\
\frac{3 \alpha \theta(4+k)}{a k^{2}}\left(b^{2}-b^{2}\right) \tag{55}
\end{gather*}
$$

For the bar R this formula gives, for $b^{\prime}=0, b^{\prime}=5, b^{\prime}=10$, the following,

$$
98 \cdot 39 ; 92 \cdot 24 ; 73 \cdot 78
$$

which are somewhat larger than the observed quantities. It must be borne in mind that this bar is not a very perfect casting.

9.

For faces I or III uppermost in the bar $\mathrm{S}, k=\cdot 957$. With face I uppermost, and over the supports $\operatorname{NCC}^{\prime} \mathbf{N}^{\prime}$, seven comparisons were made; and with the face III uppermost, and over the supports $E N N^{\prime} \mathrm{E}^{\prime}$, six comparisons were made; and finally with face III uppermost and over the supports $\operatorname{ECC}^{\prime} \mathrm{E}^{\prime} 16$ comparisous were made. The observed variations of length being compared with the theoretical variations from table (54) we get,-

$$
\begin{aligned}
\frac{3 x(4+k)}{a k^{2}} & =1{ }_{1722} \\
\alpha & =\cdot 4274
\end{aligned}
$$

In the following table are collected the observed and computed variations of length.

Changes of Supports		$\Delta\left[m n^{\prime}\right]$		$\Delta\left[m m^{\prime}\right]$		$\Delta\left[m m^{\prime}\right]$	
from	10	Observed.	Computed.	Obseryed.	Coruputed.	Observed.	Computed.
NN^{\prime}	$\mathrm{CC}^{\prime \prime}$	- 21.8	- 22.4	-223	- 22.6	- 23.5	- 22.4
"	NC'	-18.1	- 19.1	- 193	- 19.3	-20\%	- 19.1
"	CN^{\prime}	- 19.1	-1911	- 19.8	- 19.3	- 20.9	-19.1
",	EE^{\prime}	$39^{\circ} 2$	37.2	45.7	$45 \cdot 6$	37.0	37.2
"	EN^{\prime}	18.0	16.7	16°	16.7	9.6	$10 \cdot 7$
	NE^{\prime}	$10 \cdot 9$	$10 \cdot 7$	$16 \cdot 2$	$16 \cdot 7$	$15 \cdot 8$	16.7
CC'	EE'	60.8	$59 \cdot 6$	67.1	$68 \cdot 2$	$59^{\prime} 5$	59.6

During the observations of which the results are given in the four last lines of this table, the rollers were reversed, that is, the concave-surfaced rollers which had been hitherto under the left end of the bar were placed on the right, and the convex on the left.

In the next series with this bar, three points only were observed; viz., $m m^{\prime}$ at the extremes; and a third, elevated above the precise centre of the bar,-we shall call this point i. It is at the same height above the surface as the others, namely, 2 inches exactly. The variations in length $\Delta[m i]$ and $\Delta\left[i m^{\prime}\right]$ of the two halves of the bar as the supports changed from EN' to NE^{\prime} were then observed; ten comparisons with face II uppermost, and 12 comparisons with face IIII uppermost.

Face.	Change of Supports		$\Delta[\mathrm{mi}]$	$\Delta\left[\mathrm{im}^{\prime}\right]$
	from	to		
III	EN $"$	NE^{\prime} $"$	$-9 \cdot 7$ -9.7	$9 \cdot 8$ $9^{\circ} 9$

The theoretical value is

$$
\frac{3 a(4+k)}{\alpha k^{2}} \times 61 \cdot 55
$$

Here $k={ }^{\prime} 992$, which gives

$$
-\Delta[m i]=9 \cdot 9=\Delta[i m]
$$

The effect of a weight placed at the centre while the bar rested on EE^{\prime} was also observed, and the results are shown in the following table:-

Face.	Points.	$\Delta\left[\mathrm{mm}^{\prime}\right]$	
		Observed.	Computed.
	Upper I	Upyer Lower	58.38 58.27 59.01

Of these results, the last is the mean of six observations, the former of two each. It is sufficiently clear that the neutral axis is exceedingly close to the centre of the bar.

10.

The differences which remain between the observed and computed variations of length in each of these bars, though really very minute quantities, are yet far too large to be attributed to mere errors of observation. They may be due, perbaps, in sinall part to the friction of the rollers, which is not easily subjected to calculation, as it cannot always be determined how it is acting. A more probable source of error is the tendency of the perpendiculars to ride upwards when being fastened on to the bar. This will be easily understood from the figure page 32. By the pressure of either of the lower screws, if not carefully applied, the little brass framework separates from contact with the upper surface of the bar. But this will not account for the principal differences. The runs of the microscopes are very well determined, and the inner microscopes A, C, were interchanged during the observations. The inevitable imperfections in focussing may have been a source of more error than the observers could have expected.

The total number of micrometer readings in these experiments is 2984.

IV.

DETERMINATION OF THE ERRORS OF DIVISIONS OF

OF.

1.

This scale, of which the upper surface is represented in the accompanying diagram, is divided into 12 inches; the thirteen lines are marked $a b c d e f g h k l m n p$. The extreme inches $a b$ and $n p$ are divided each into tenths, and two of these tenths in each inch are again subdivided into hundredths.

The tenths in $a b$ are numbered from a towards b. The space between the second and third lines is subdivided into hundredths, as is also the space between the sixth and seventh, as indicated by the dark lines. The inch $n p$ is similarly subdivided, but this part of the scale is not considered in the present investigation.

The lines of which the errors have been determined are

$$
234678 b c d e f g
$$

together with the 18 lines subdividing into hundredths the two tenths.
The bar is supported on the same cast-iron stand on which the standard yard at other times lies. In Figure 5, Plate VI., the foot f is seen supported on the stand $b b^{\prime}$. It rests immediately on a piece of iron $e e e$ an inch broad and about a quarter of an inch thick, the middle part on which the bar rests being lower than the extremities. The extremities are supported on the two rollers which are held by the brass uprights $c c^{\prime}$. The peculiar shape of the piece e ee is owing to the circumstance that the divisions on the standard yard are half an inch below its surface, while those of the foot are on its surface, and the vertical play of the screws which raise or lower the rollers is not sufficient to meet the requirements of the two bars.

The method of procedure is as follows :-The microscopes being set up at six inches apart, the spaces $a g, g p$ are compared; this gives the error of the position of g. The microscopes are then set up at five inches apart, and the spaces $a f, b g$ compared. They are then set up at four inches apart, and the spaces ae, bf, cg compared; and, finally, the microscopes being at three inches apart, the spaces $a d, b e, c f, d g$ are compared.

The errors of the tenths of inches in $a b$ were obtained as follows:-A small and bcautifully divided silver scale, containing three tenths of an inch, was mounted to the
left of the bar OF, and precisely in the same line with it, at the distance of about twelve inches from $a b$. The four lines on the silver scale marking threc tenths of an inch are numbered $\circ 12$ 3, the tenths are subdivided into hundredths, which, however, we make no use of here. The silver scale and OF are both mounted on the block of wood a a' shown in Plate VI, Figure 5. This tigure represents the mode of measurement of the small space of rö inch on the Contact Apparatus h, on the right of f, under the microscope K ; but it will serve equally to explain the measurement of the teuths of inches on $a b$; for the small silver scale, mounted on a brass stand, occupied the place of h in Figure 5. The only difference is that the silver scale was on the left under H and the foot to the right under K . The small silver scale is secured to its brass stand (which is purposely weighty) by a couple of small springs pressing upon the extremities of its upper surface. It is also to be observed that $O F$ can be moved some three quarters of an inch cither to the right or left of its central position by causing the piecc eee to run upon the rollers which support its extremities.

First, suppose the lines o in the silver scale and a on OF to be brought, by the longitudinal running of the carriages $g g^{\prime}, g^{\prime} g^{\prime}$, into the centres of the fields of view of the microscopes, the former under H on the left, the latter under K on the right, and bisected by the cross-bairs of the micrometers, near the zeros. Tben suppose the carriages to be run just two tenths of an inch to the left, we shall have the lines 2 on the silver scale and 2 on OF near the zeros of the microscopes; these lines being bisected, it is evident that we know the difference of length of the space \circ to 2 on the silver scale and a to 2 on OF. And in this manner we may compare any of the tenths on $a b$ with the tenths on the silver scale, and so, by properly arranging the observations, obtain the relative lengths of the tentlos of $a b$.

The lines subdividing $a b$ with which we are most concerned are $2,3,6,7$, but we cannot determine these without at least some of the others also. We may proceed in various ways; for instance, determine the values of each tenth as compared with one tenth on the silver scale; or compare the successive double tenths $[a \cdot 2],[\mathrm{r} \cdot 3],[2 \cdot 4], \ldots[8 \cdot b]$ with a space of two tenths on the silver scale, and the single tenths $[a \cdot 1],[9 \cdot b]$ with a space of one tenth on the silver scale; or we may compare the double tenths [a. 2], [2.4], [4.6], [6.8], [8.6] with a two-tenths space on the silver scale, and the three tenths $[2 \cdot 5],[3 \cdot 6],[4 \cdot 7],[5 \cdot 8]$ with a space of three tenths on the silver scale; or compare the double tenths as in the preceding case, and the four centre tenths [3.4], [4.5], [5.6], [6.7] with a space of one tenth on the silver scale; or, among many other available combinations, the following:-compare the successive double teuths $[a \cdot 2],[2 \cdot 4],[4 \cdot 6],[6 \cdot 8],[8 \cdot b]$ with a space of two tenths on the silver scale, and the three tenths $[a \cdot 3],[3 \cdot 6],[4 \cdot 7],[7 \cdot b]$ with a space of three tenths on the silver scale.

If in each of these cases we investigate the algebraical exprcssions for the required errors of division, and also the probable errors of such determinations, it will be found that the last named is the best. It has therefore been adopted.

With respect to the subdivisions of [2.3], [6.7] into huudredths, each humdredth has been measured twenty times with each microscope, by which means their errors are very accurately obtained.

2.

On each of the platinum disks which mark the inches, and on the platinum slips which bear the subdivisions of the extreme inches, are traced two parallel longitudinal lines. These form fragments of a pair of parallel straight lines runuing the length of the bar and defining the part of the lines (transverse) of division which is to be observed. It will be convenient to give a name to that imaginary line which lies on the surfice of the scale, parallel to and midway between the parallel lines just referred to. We shall call it the line of neasurements. So, on the silver scale, those points of the transverse divisiou lines which are actually bisected by the microscopes lie in the line of measurements of that scale.

In determining the errors of the inch divisions, the adjustments are the following :1. The upper surface of the bar to be truly horizontal. 2. 'The line of measurements to be parallel to the rails or direction of motion of the carriages. 3. The micrometer microscopes to be placed with their axes vertical, and their foci in the line of measurements on the upper surface of the har. The distance of the zeros of the microscopes is for convenience made to exceed the quantity under measurement by from 10 to 40 divisions; so that the points will lie in the following order if, for instance, the microscopes are three inches apart, and the points $a d$ under H and K respectively

$$
\approx a \quad l!z^{\prime}
$$

$z z^{\prime}$ are the zeros of the microscopes; and $z a$ is the quantity measured by H , and $z^{\prime} d$ that measured by k. In this position all measurements are positice; if α be the reading of H and β that of K, h the value of one division of the micrometer in H, k the value of one division of the micrometer in K, then Z being the actual distance of the points $z z^{\prime}$,

$$
Z=[a \cdot d]+\alpha h+\beta k
$$

The method of observing and recording the observations is as follows:-Suppose, for instance, the six-inch spaces $a g, g p$ are being compared. 'The lines a, g are first brought into view in the microscopes H K respectively, and by the movement of the slow motion screws (transverse) of the carriages the line of measurements is made to pass through the cross-hairs of the two microscopes; the lines are then bisected and readings taken in the following order,-I one of $\mathrm{H}, 2$. one of $\mathrm{K}, 3$. one of $\mathrm{H}, 4$. one of $\mathrm{K}, 5$. one of $\mathrm{H}, 6$. one of K . Thus we have three readings of a and three of g. The bar is moved six inches to the left, and g, p come into view under the microscopes H, K respectively. The transverse adjustment locing made, to cause the line of measurements to pass through the cross-hairs of the two microscopes, the lines g, p are observed in the same manner as were a, g; that is, three readings of each are taken, the microscopes being read alternately. We have now one comparisou of ag, gp. At each visit to the Bar Room three comparisons of the two spaces are made, involving thirty-six micrometer readings. The spaces are brought under' the microscopes in the order

$$
a g, g p: g p, a g:(u g, g p
$$

or the reverse-

$$
g p, a g: a g, g p: g p, a g
$$

The following is a specimen page of the observation book, being the readings taken at one visit:-

Date. Observer.	Space.	Readings of		space.	Readings of	
		H	K		H	K
$\begin{aligned} & \text { December } 12, \\ & 2.30 \text { p.m. } \end{aligned}$	${ }^{\prime \prime} 1$	14.2	19.2	al	13.3	18.6
		$1{ }^{\circ} \mathrm{O}$	$19^{\circ} 3$		138	18.6
		13.6	18.7		13.4	18.8
		$1+9$	18.4		13.3	18.6
		15°	17%	(${ }^{\prime}$	133	18.8
		$14^{\circ} 8$	17%		13.7	18.6
Quartermaster Steel, R.E.	gp	14.5			14.3	16.0
		$15^{\circ} \mathrm{O}$	16.8	g ${ }^{\prime}$	14°	1.57
		$14^{\circ}+$	$17 \cdot 1$		14°	$16 \cdot 2$

Here we have three distinct comparisons of $a g, g p$, each comparison involving twelve micrometer readings. We may either treat the comparisons separately, or take the mean of all the readings of $a g$ and of $g \mu$. 'Thus, it a be the mean of the nive readings of a under H, β that of the nine readings of g under K, and if $\alpha^{\prime} \beta^{\prime}$ similarly pertain to $\mathrm{g} p$,

$$
\begin{aligned}
& Z=\left[a \cdot \kappa^{\prime}\right]+\alpha h+\beta k \\
& Z=[\xi \cdot p]+\alpha^{\prime} h+\beta^{\prime} k
\end{aligned}
$$

These equations we shall take to be the result of this visit. The scale being left continually under the microscopes was visited three times a dary. The ninety comparisons of the six-inch spaces occupied five days in November 1863 and six days in December. The comparison of the five-inch spaces of, $\frac{\lg }{}$, similar in every respect to the above, occupied seven days in November aud two in December, -in all fifty-onc comparisons. In the comparison of the four-inch spaces, which occupied three days in November and six in December, at each visit two comparisons of the three spaces were made in the order

$$
u e, l f, c s: c \underline{s}, b f, a r
$$

involving thirty-six micrometer readings. Lach visit or page of the observation book gives then this result :

$$
\begin{aligned}
& Z=[a \cdot e]+\alpha h+\beta k \\
& Z=[b \cdot f]+\alpha^{\prime} h+\beta^{\prime} k \\
& Z=[c \cdot g]+\alpha^{\prime \prime} h+\beta^{\prime \prime} k
\end{aligned}
$$

where each of the quantities $\alpha \alpha^{\prime}$. . . is the mean of six micrometer readings. There are fifty comparisons in this series.

The comparisons of the three-inch spaces occupicd four days in November and four days in December. At each risit were obtained, from forty-eight readings, two comparisons of the four spaces in the following order

$$
a d, b e, c f, d g: d g, c f ; b r, a d
$$

giving the results-

$$
\begin{aligned}
& Z=[a \cdot d]+\alpha h+\beta k \\
& Z=[b \cdot e]+\alpha^{\prime} h+\beta^{\prime} k \\
& Z=[c \cdot f]+\alpha, h+\beta k \\
& Z=[d \cdot g]+\alpha^{\prime \prime} h+\beta^{\prime \prime} k
\end{aligned}
$$

where each of the quantities $\alpha \alpha^{\prime} \ldots$ is the mean of six micrometer readings. There are fifty comparisons in this series.

The total number of micrometer readings from which the errors of division of the lines b c defg have to be deduced is 3792 .

In applying to these observations the method of least squares, we shall determine errors of divisions which shall make, not the sum of the squares of the errors of the 3792 individual micrometer readings a minimum, but the sum of the squares of the errors of the determinations at each visit a minimum.

Tables I., II., III., IV. contain the results of the observations on the six-inch, fiveinch, four-inch, and three-inch spaces in the form explained above: the binomials ranged in a horizoutal line in each table being the results of one visit.

Observations for determining

the Erions of Inch Divisions on the Foot OF.

Microscopes 6 inches apart.
thable I.

$Z-[a \cdot g]$	$\mathrm{Z}-[g \cdot \mu]$
- 4.17h+2340k	- 3.71h $+20.60 h$
+ $14.81 h+19.30 h$	$+16.29 h+14.70 k$
$+19.37 h+14.91 h$	$+19.31 h+12.84 h$
$24412+8 \cdot 7: k$	$25.19 h+6.41 k$
$13.97 h+18.08 k$	${ }^{1} 1.57 h+16.85 h$
$14.12 h+18 \cdot 12 h$	$13.70 h+16.69 k$
$12.73 h+19.70 h$	$13.01 h+17.58 k$
$14.88 h+15788$	$15.03 k+12.89 k$
$14^{\circ} 0+h+15^{\circ} 23^{k}$	$14^{6} 69 k+12 \cdot 21 k$
$15 \cdot 16 h+1150 k$	$14.41 h+9.21 h$
$19.13 h+10.69 h$	$19.98 h+7.63 h$
$19.77 h+15.91 k$	$19.92 h+13.80 k$
$15.78 h+18.09 h$	$14.45 h+17.77 k$
$16.48 k+17.76 k$	$16.09 h+15.94 k$
$11.92 h+22.06 h$	$11.99 h+20.40 k$
$16.94 h+17.67 h$	$15.00 h+17.11 h$
$15^{24} \mathbf{4}^{h}+18.55^{h}$	$14.93 h+15.82 k$
$13.62 h+18.80 h$	$14.57 h+16.92 k$
$16.67 h+17.40 h$	$15.08 h+15.27 h$
$15.40 h+19.32 k$	$15.30 h+17.83 h$
$15.77 h+1791 k$	$13.09 h+18.012$
$17.37 k+16.33 k$	$20.19 h+11.98 k$
$16.54 k+17.63 k$:5.27h+16.28 k
$19.30 h+16.54 k$	$19.69 h+13.67 k$
$16 \cdot 38 h+18 \cdot 61 k$	$15.72 h+15.99 k$
$17.17 h+16 \cdot 46 k$	$16.67 h+14.87 h$
$20 \cdot 43 h+14 \cdot 10 k$	$19.80 h+12.98 h$
$16.21 h+16.12 h$	$16.79 h+14.11 k$
$16.42 h+15.89 k$	$16.32 h+14.34 k$
$+19.07 h+14.11 k$	+ $17.83 h+14.80 k$
$+15.82 h+16.82 k$	$+1561 k+14.85 k$

N.B. -The last detached line in each of these tables is the mean of the quantities in the column at the bottom of which it stands.

Microscopes 5 inches apart.
Table II.

$\mathrm{Z}-\left[a \cdot j^{\prime}\right]$	$\mathrm{Z}-[\mathrm{l} . \mathrm{g}]$
$11.95 h+16.612$	$17.60 h+15.76 k$
$10.66 h+13.82 k$	$9^{*} 24 h+19.39 k$
$16.412+10.16 k$	$19.88 h+10.55 k$
$19.42 h+7.36 k$	20.64 $h+11010 k$
$13.96 h+13.77 k$	$13 \cdot 13 h+18 \cdot 12 k$
$17.44 h+9.00 k$	$17^{\circ} 07 h+1402 k$
$16.97 h+11.45 k$	$16.68 h+15.63 k$
$16.67 h+11.36 k$	$15.40 h+16.39 k$
$14.73 h+13.60 k$	$15.92 h+16.22 k$
$15.92 h+8.69 k$	$15914+13112$
$16.54 h+4.99 k$	$14.09 h+11.83 k$
$15.39 h+16.04 k$	$16 \cdot 12 h+18.03 k$
$17.22 h+15.07 k$	$16.86 h+18.62 k$
$16.39 h+15.64 k$	$18.07 h+17.04 k$
$16.112+16.51 k$	$15.69 h+20.81 k$
$15.96 h+1535 k$	$17.98 h+16.65 k$
$15.92 h+15.26 k$	$18.33 h+16.09 k$
$15774 h+12.63 k$	$16.39 h+15.84 k$

Microscopes 4 inches apart.
Table III.

$\mathrm{Z}-[a \cdot e]$	$Z-[b \cdot f]$	$\mathrm{Z}-[\mathrm{c} \cdot \mathrm{g}]$
$19.83 h+21.65 k$	$18.66 h+20.60 k$	$20.50 h+24.80 k$
$19.02 h+21.02 h$	$20.53 h+17.60 h$	$19.48 h+24.95 k$
$23.82 h+19.12 h$	$22.37 h+18.43 h$	$24.28 h+22.70 h$
$25.30 h+18.40 k$	$27.63 h+14.33 k$	$25.60 h+23.10 k$
$29.20 h+14.65 k$	$28.88 h+13.43 h$	$29.45 h+18.85 k$
$24.15 h+19.85 h$	$18.78 h+23.55 h$	$19.22 h+29.16 k$
$21.50 h+23.68 k$	$20.80 h+23.17 k$	$23.55 h+25.42 k$
$28.05 h+15.48 h$	$23.75 h+18.85 k$	$22.47 h+26.22 h$
$24.40 h+18.37 k$	$23.60 h+18.42 k$	$25^{115} h+2 \mathrm{ra}^{20} k$
$23.53 h+21.05 h$	$22.77 h+20.73 h$	$23.98 h+34.68 k$
$2 \mathrm{I} 40 h+25.32 h$	$21.33 h+2+40 h$	$21.40 h+30 \cdot 02 h$
$23.63 h+23.92 h$	$22 \cdot 65 h+23.37 k$	$2+46 h+2785 k$
$22.85 h+25.75 h$	$22.66 h+25.05 h$	$23.00 h+30.06 h$
$20.55 h+28.20 k$	$20.98 h+26.68 k$	$20.52 h+33 \cdot 13 h$
$22.11 h+25.88 k$	$21.18 h+25.35 k$	$2+10 h+28.45 k$
$23.15 h+23.75 h$	$22.46 h+23.22 h$	$23.90 h+27.50 k$
$20.62 h+28.72 h$	$20 \cdot 63 h+27.27 h$	
$24.18 h+23.86 k$	$23.38 h+22.97 h$	$27+3 h+25.62 k$
$24.08 h+25.35 h$	$25^{\prime 2} 5 k+23.28 k$	$26.13 h+28.22 k$
$24.18 h+2461 h$	$23.33 h+23.03 k$	$26 \cdot 62 k+26 \cdot 40 k$
$26.83 h+22.15 h$	$27^{\circ} 03 h+20.96 h$	$26 \cdot 96 k+26.95 k$
$24.33 h+23.16 k$	$24.92 k+21 \cdot 38 k$	$27 \cdot 67 h+24.85 k$
$24.95 h+2+02 k$	$2+32 h+22.38 h$	25.82h + $27.30 k$
$23.36 h+23.65 h$	$22.46 h+2345 h$	$27^{\prime} 43 h+2447 k$
$24.95 h+24^{.27} k$	$24^{\circ} 55^{k}+33^{3} 3$	$25 \cdot 60 h+28 \cdot 18 k$
$23.60 h+22.63 k$	$23.00 k+21.80 k$	$24.23 k+26.50 k$

Microscopes 3 inches apart.
Table IV.

$\mathbf{Z - [a \cdot d]}$	$\mathrm{Z}-[$ b.e]	$\mathrm{Z}-[c . f]$	$Z-[d \cdot g]$
$23.83 h+10.06 k$	$23.87 k+10.95 k$	$23.95 h+10.42 h$	$25.2 .5 h+12.20 k$
$21.77 k+11.18 k$	$21.57 h+12.92 k$	$2175 h+11.95 k$	$21.88 h+15.00 h$
$22.53 h+10.80 h$	$21.72 h+12.83 k$	20.53h ${ }^{\text {a }} 14.03 k$	$23.55 h+15.27 h$
$22.42 h+10.75 k$	$22.88 h+1138 k$	$22.30 h+12.42 k$	$21.46 h+15.88 h$
$23.35 k+10.63 k$	$23.67 h+1132 k$	$20.22 k+14+3 k$	92.22h $+16.82 h$
21.63h+11.83h	$20.92 h+14.35 h$	$19.65 h+1.4 .50 k$	19.98 ${ }^{\text {a }}$ +17.68 k
$17.40 h+16.60 k$	$17 \cdot 18 h+17 \cdot 28 h$	$16.82 h+18.48 h$	$16.43 h+21.98 h$
$21.33 h+12.42 h$	$19.30 h+15.65 h$	$19.80 h+1+32 k$	$21.27 h+16.78 k$
$21.07 h+13.86 k$	$22.42 h+13.50 h$	$21.83 h+13.30 k$	$24.98 h+13.65 k$
$18.42 h+15.05 h$	$17.28 h+16.88 h$	$17.52 h+16.55 h$	$16.36 h+21.00 h$
$15.38 h+18.62 h$	$14.80 h+20.53 h$	$12.13 h+23.82 k$	$14.72 h+23.73 h$
$15.65 h+16.86 h$	$1.500 h+18.46 k$	$16 \cdot 20 h+17.47 h$	1778h $+20.33 h$
$17.53 h+16.35 k$	$1772 h+17 \cdot 11 k$	$18.80 h+17.00 h$	19.33h $+19.98 h$
$19.83 h+13.83 k$	$18 \cdot 38 h+16.27 k$	$18.13 h+16 \cdot 62 h$	$18.62 h+19.75 h$
$17.82 h+16.68 k$	$18 \cdot 22 h+17.08 h$	$17.92 h+17.80 k$	$18 \cdot 11 h+20.37 k$
$15.23 h+18.33 k$	$15.98 h+18.65 k$	$16.66 h+17.68 h$	$19.27 h+19.08 h$
$15.93 k+14.48 k$	$15.75 h+15.28 h$	$16.70 h+15.25 \%$	$17.38 h+17.55 h$
$15.03 h+14.87 k$	$15.37 h+15.48 h$	$16.08 h+14.47 /$	$13.98 h+2 \times 15 h$
$17.72 h+12.63 h$	$18.78 h+12.05 k$	$19.48 h+12.50 k$	$21.22 h+13.25 k$
$13.92 h+15.76 k$	$15.08 h+14.90 k$	$13.17 h+17.07 k$	$13.48 h+20.37 h$
$15.36 h+15.35 h$	$14.13 h+15.88 h$	$14.82 h+16.62 k$	$16.53 h+18.13 h$
$15.72 h+14.96 k$	$14.45 h+17.25 h$	$13.76 h+17.53 h$	$18.12 h+16.42 h$
$21.52 k+21.73 k$	$21.10 h+23.23 h$	$20.77 h+24.47 h$	$21.05 h+26.90 h$
$20.16 h+23.70 k$	$19.56 h+23.96 h$	$20.06 h+24.05 k$	$23.78 h+23.95 k$
$24.38 k+20.06 k$	$24.47 h+21.05 k$	$24.65 h+20.68 k$	$25.05 h+23 \cdot 16 h$
$19.00 h+15.10 k$	$18.78 h+16.17 h$	$18.55 h+16.54 h$	$19.67 h+18.82 k$

Let x_{y} be the error in position of the line g, which is supposed to be equidistant from a and p, so that if the length of the whole scale, or $[a \cdot p]$, be $=12 \mathrm{I}$,

$$
\begin{align*}
& {[a \cdot g]=6 \mathrm{I}+x_{g}} \tag{I}\\
& {[g \cdot p]=6 \mathrm{I}-x_{g}}
\end{align*}
$$

Again, let $x_{b} x_{c} x_{d} x_{c} x_{f}$ be the errors of the lines $b c d e f$ considered as subdividing [$a \cdot g$] into six equal parts, so that

$$
\begin{align*}
& {[a \cdot b]=\frac{1}{6}[a \cdot g]+x_{u}=\mathrm{I}+x_{b}+\frac{1}{6} x_{g}} \tag{2}\\
& {[a \cdot c]=\frac{2}{6}[a \cdot g]+x_{c}=2 \mathrm{I}+x_{c}+\frac{2}{6} x_{g}} \\
& {[a \cdot d]=\frac{3}{6}[a \cdot g]+x_{d}=3 \mathrm{I}+x_{d}+\frac{3}{6} x_{g}} \\
& {[a \cdot e]=\frac{4}{6}[a \cdot g]+x_{c}=4 \mathrm{I}+x_{b}+\frac{4}{6} x_{b}} \\
& {[a \cdot f]=\frac{5}{6}[a \cdot g]+x_{f}=5 \mathrm{I}+x_{f}+\frac{5}{6} x_{g}}
\end{align*}
$$

And again, let $x_{4} x_{3} x_{4} x_{6} x_{1} x_{\mathrm{t}}$ be the errors of the lines 234678 with reference to the lines a and b; that is,

$$
\begin{align*}
& {[a \cdot 4]={ }_{10}^{4}[a \cdot b]+x_{b}={ }_{10}^{4} \mathrm{I}+x_{3}+{ }_{10}^{4} x_{b}+\frac{T_{6}^{4}}{6} \cdot x_{0}} \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& {[a \cdot 7]={ }_{1_{0}^{7}}^{7}[a \cdot k]+x_{2}=1_{10}^{7} \mathrm{I}+x_{7}+{ }_{10}^{7} x_{b}+{ }_{8_{0}^{7}} x_{g}}
\end{aligned}
$$

The value of x_{y} results immedintely from the means of the columns in Table I.

$$
\begin{gather*}
{[a \cdot g]-[g \cdot \mu]=[15.61 h+14.85 k]-[15.82 h+16.82 k]} \\
2 \cdot x_{g}=-0.21 h-1.97 k \tag{4}\\
x_{s}=-0.10 h-0.99 k
\end{gather*}
$$

It is convenient to remember that h and k are almost exactly equal to one another and to ${ }^{\text {g }}$ of the millionth of a yard. We shall obtain their exact values further on.

In Tables I., II. each numerical quantity results from the mean of 9 inicroureter readings; if the probable error of a single reading be s, that of cach binomial in these Tables is $\frac{1}{3} \in \sqrt{2}$. Similarly, in Tables III., IV. the probable error of each binomial is $\frac{1}{3} \leq \sqrt{3}$. The weight, therefore, of the quantities in 'rables I., II. is greater than that of the quantitics in Tables III., IV. in the proportion of 3:2. In fact the 17 lines in Table II. result from 5 I comparisons, but the 25 lines in Tables III. or IV. from 50 comparisons.

In Table IV. let the quantities in the $n^{\text {tu }}$ line be

$$
\alpha_{n} \beta_{n} \gamma_{n} \hat{o}_{n}
$$

The corresponding distance of the zeros of the microscopes

$$
3 \mathrm{I}-z_{n}
$$

In Table III., similarly,

$$
\alpha_{n}^{\prime} \beta_{n}^{\prime} \gamma_{n}^{\prime}, \quad 4 \mathrm{I}-z_{n}^{\prime}
$$

In Table II., similarly,

$$
\alpha_{n}^{\prime \prime} \beta_{n}^{\prime \prime} \gamma_{n}^{\prime \prime} \quad, \quad 5 \mathrm{I}-z_{n}^{\prime \prime}
$$

Then the equations will be-

$$
\begin{align*}
& z_{1}+x_{u}+\alpha_{1}=0 \tag{5}\\
& z_{1}-x_{b}+x_{c}+\beta_{1}=0 \\
& z_{1}-x_{c}+x_{f}+\gamma_{1}=0 \\
& z_{1}-x_{d t}+\delta_{1}=0 \\
& z_{2}+x_{d}+\alpha_{z}=0 \\
& z_{2}-x_{b}+x_{e}+\beta_{2}=0 \\
& z_{2}-x_{c}+x_{f}+\gamma_{2}=0 \\
& z_{y}-x_{d}+\delta_{s}=0
\end{align*}
$$

$$
\begin{aligned}
& z_{1}^{\prime} \quad+x_{c}+\alpha_{1}^{\prime}=0 \\
& z_{1}^{\prime}-x_{b}+x_{f}+\beta_{1}^{\prime}=0 \\
& z_{1}^{\prime}-x_{c} \quad+\gamma_{1}^{\prime}=0 \\
& z_{2}^{\prime} \quad+x_{0}+\alpha_{z}^{\prime}=0 \\
& z_{g}^{\prime}-x_{b}+x_{f}+\beta_{y}^{\prime}=0 \\
& z_{1}^{\prime}-x_{c} \quad+\gamma_{2}^{\prime}=0 \\
& z^{\prime \prime}{ }_{1} \quad+x_{f}+\alpha^{\prime \prime}{ }_{1}=0 \\
& z^{\prime \prime}{ }_{1}-x_{b} \quad+\beta^{\prime \prime}=0 \\
& \begin{array}{l}
z^{\prime \prime}{ }_{2}+x_{f}+\alpha^{\prime \prime}{ }_{2}=0 \\
z^{\prime \prime}{ }_{2}-x_{b}+\beta^{\prime \prime}{ }_{2}=0
\end{array}
\end{aligned}
$$

The last equations, namely, those in $z^{\prime \prime}$, have a greater weight than the others, as has been explained. They must, therefore, be multiplied by $\sqrt{ } \frac{3}{2}$, or, which will be sufficiently near, by the square root of $\frac{25}{17}$; this will considerably simplify the solution. Solving by the method of least squares-

$4 z_{1}$	$-x_{b}-x_{c}$	$+x_{0}+x_{f}+\alpha_{1}+\beta_{1}+\gamma_{1}+\delta_{1}=0$
$4 z_{2}$	$-x_{b}-x_{c}$	$+x_{0}+x_{f}+\alpha_{2}+\beta_{2}+\gamma_{2}+\delta_{2}=0$
$4 z_{3}$	$-x_{b}-x_{0}$	$+x_{6}+x_{f}+\alpha_{3}+\beta_{3}+\gamma_{3}+\delta_{3}=0$

$3 z_{1}^{\prime}$	$-x_{b}-x_{c}$	$+x_{c}+x_{f}+\alpha_{1}^{\prime}+\beta_{1}^{\prime}+\gamma_{1}^{\prime}$	$=0$
$3 z_{2}^{\prime}$	$-x_{b}-x_{c}$	$+x_{e}+x_{f}+\alpha_{2}^{\prime}+\beta_{2}^{\prime}+\gamma_{2}^{\prime}$	$=0$
$3 z_{3}^{\prime}$	$-x_{b}-x_{c}$	$+x_{c}+x_{f}+\alpha_{3}^{\prime}+\beta_{3}^{\prime}+\gamma_{3}^{\prime}$	$=0$

Divide through each of these last equations by n, which represents 25 , and if z represent the mean of the quantities $z_{1} z_{3} \ldots z_{25} ; \alpha$ the mean of $\alpha_{1} \alpha_{3} \ldots \ldots \alpha_{2 s}$, and so on, we get,

$$
\begin{aligned}
& 4 z-x_{b}-x_{c} \quad+x_{0}+x_{f}+\omega+\beta+\gamma+\delta=0 \\
& 3 z^{\prime}-x_{b}-x_{c} \quad+x_{a}+x_{j}+a^{\prime}+\beta^{\prime}+\gamma^{\prime}=0 \\
& 2 z^{\prime \prime}-x_{b} \\
& -z-z^{\prime}-z^{\prime \prime}+3 x_{b} \\
& -z-z^{\prime} \quad+2 x_{c} \\
& 2 x_{d} \\
& \begin{array}{l}
z+z^{\prime} \quad-x_{b} \\
z+z^{\prime}+z^{\prime \prime}-x_{b}-x_{c}
\end{array} \\
& \begin{aligned}
+2 x_{0}+\beta+\alpha^{\prime} & =0 \\
+3 x_{f}+\gamma+\beta^{\prime}+\alpha^{\prime \prime} & =0
\end{aligned}
\end{aligned}
$$

Write now A, B, C, D, E, F, G, H for the absolute terms of these eight equations, and we get, eliminating $z z^{\prime} z^{\prime \prime}$, the following expressions for $x_{b} \ldots \ldots x_{0}$:

$$
\begin{align*}
& 0=18 x_{b}+3 \mathrm{~A}+4 \mathrm{~B}+5 \mathrm{C}+11 \mathrm{D}+4 \mathrm{E}+2 \mathrm{G}+\mathrm{H} \tag{6}\\
& 0=18 x_{c}+6 \mathrm{~A}+8 \mathrm{~B}+\mathrm{C}+4 \mathrm{D}+17 \mathrm{E}-5 \mathrm{G}+2 \mathrm{H} \\
& 0=18 x_{a} \\
& 0=18 x_{e}-6 \mathrm{~A}-8 \mathrm{~B}-\mathrm{C}+2 \mathrm{D}-5 \mathrm{E}+17 \mathrm{G}+4 \mathrm{H} \\
& 0=18 x_{f}-3 \mathrm{~A}-4 \mathrm{~B}-5 \mathrm{C}+\mathrm{D}+2 \mathrm{E}+4 \mathrm{G}+11 \mathrm{H}
\end{align*}
$$

And the weights of the determinations are :

$$
\begin{align*}
& x_{b} \text { weight } \frac{25 \cdot 18}{\text { II }} \tag{7}\\
& x_{c} \quad=\frac{25 \cdot 18}{17} \\
& x_{u} \quad \# \quad \frac{25 \cdot 18}{9} \\
& \text { } x_{0} \quad " \frac{25 \cdot 18}{17} \\
& x_{f} \quad " \quad \frac{25 \cdot 18}{11}
\end{align*}
$$

If now we substitute for A B C . . H their values in terms of $\alpha \beta \ldots$, we get

$$
\begin{align*}
0 & =6 x_{b}+\alpha-2 \beta+0+\delta+2 \alpha^{\prime}-2 \beta^{\prime}+0+2 \alpha^{\prime \prime}-2 \beta^{\prime \prime} \tag{8}\\
0 & =6 x_{c}+2 \alpha-\beta-3 \gamma+2 \delta+\alpha^{\prime}+2 \beta^{\prime}-3 \gamma^{\prime}+\alpha^{\prime \prime}-\beta^{\prime \prime} \\
0 & =6 x_{d}+3 \alpha \\
0 & =6 x_{e}-2 \alpha+3 \beta+\gamma-2 \delta+3 \alpha^{\prime}-2 \beta^{\prime}-\gamma^{\prime}+\alpha^{\prime \prime}-\beta^{\prime \prime} \\
0 & =6 x_{f}-\alpha-0+2 \gamma-\delta+0+2 \beta^{\prime}-2 \gamma^{\prime}+2 \alpha^{\prime \prime}-2 \beta^{\prime \prime}
\end{align*}
$$

Here the quantities sought are expressed in terms of known quantities: and from the Tables we find

$$
\begin{gather*}
\alpha=19.00 h+15.10 k \tag{9}\\
\beta=18.78 h+16.17 k \\
\gamma=18.55 h+16.54 k \\
\vdots=19.67 h+18.82 k \\
\alpha^{\prime}=23^{\circ} 60 h+22.63 k \\
\beta^{\prime}=23^{\circ} 00 h+21.80 k \\
\gamma^{\prime}=24.23 h+26.50 k \\
\alpha^{\prime \prime}=15.74 h+12.63 k \\
\beta^{\prime \prime}=16.39 h+15.84 k
\end{gather*}
$$

Whence,

$$
\begin{align*}
& x_{l}=-0.17 h+0.53 k \tag{10}\\
& x_{c}=+0.14 h+2.41 k \\
& x_{d}=+0.33 h+1.86 k \\
& x_{e}=+0.42 h+1.37 k \\
& x_{f}=+0.89 h+2.78 k
\end{align*}
$$

3.

The silver scale and OF being mounted for comparison, it is essential that the line of measurements in the one shall form one and the same straight line with the line of measurements on the other: further, that this line, being truly horizontal and parallel to the line of rails, shall appear, as viewed in the microscopes, to intersect the cross-hairs both in H and K .

While the left-hand line, that marked 0 , on the silver scale is in the zero of the micrometer H ; by gradually moving F on its rollers, the lines $a 2468$ on OF can be brought in succession into the zero of K. At each visit to the Bar Room each double tenth on OF (five in number) was compared with [$0 \cdot 2$].

First, o of the silver scale under H and a of $\mathbf{O F}$ under K are read, giving

$$
\alpha_{1} h+\beta_{1} k
$$

then by the motion of the carriages two tenths of an inch to the left, 2 of the silver scale and 2 of OF are brought under H and K ; these lines being read, we have

$$
\alpha_{1}^{\prime} k+\beta_{1}^{\prime} k
$$

Secondly, o of the silver scale is brought under H and 2 of OF^{-}under K ; the lines being bisected and read, give

$$
\alpha_{2} h+\beta_{2} k
$$

then by the motion of the carriages two tenths of an inch to the left, 2 of the silver scale and 4 of OF are brought under H and K ; these lines being read, we get

$$
\alpha_{2}^{\prime} h+\beta_{2}^{\prime} k
$$

Thirdly, 0 of the silver scale and 4 of OF are brought under the microscopes and read, and so on. The order of observing is, in short, this :-

	H	K
	silver Scale.	CF
Left lines		
Right lines		
$\left.\begin{array}{l} \text { Left o } \\ \text { Right. } \\ \text { 2 } \end{array}\right\}$		
$\left.\begin{array}{l} \text { Left o } 6 \\ \text { Right. } 2 \\ 8 \end{array}\right\}$		
LeftRight.2		

there being taken in each case three readings of each microscope for each line, as explained before. The results are given in detail in Tables V. and VI.

Let S be the length of the silver scale $[0 \cdot 2]$, and $S^{\prime}=[a \cdot 2]$ on OF.

In the diagram let $\mathrm{AA}^{\prime}=\mathrm{S}, a a^{\prime}=\mathrm{S}^{\prime}$. Let $\mathrm{A} a=q$: the distance of the microscopes $=q+z$; then, when the left-hand lines are under the microscopes, we get

$$
\begin{array}{r}
\eta+\alpha_{1} h+\beta_{1} k=q+z \\
\alpha_{1} h+\beta_{1} k-z=0 ;
\end{array}
$$

and when the right lines are under the microscopes, we have

$$
\begin{gathered}
q+\mathrm{S}^{\prime}-\mathrm{S}+\alpha_{1}^{\prime} h+\beta_{1}^{\prime} k=q+z \\
\mathrm{~S}^{\prime}-\mathrm{S}+\alpha_{1}^{\prime} h+\beta_{1}^{\prime} k-z=0 \\
\therefore \mathrm{~S}^{\prime}-\mathrm{S}+\left(\alpha_{1}^{\prime}-\alpha_{1}\right) h+\left(\beta_{1}^{\prime}-\beta_{1}\right) k=0 \\
\therefore[0 \cdot 2]-[a \cdot 2]=\left(\alpha_{1}^{\prime}-\alpha_{1}\right) h+\left(\beta_{1}^{\prime}-\beta_{1}\right) k
\end{gathered}
$$

Similarly,

$$
\begin{aligned}
& {[0.2]-[2 \cdot 4]=\left(\alpha_{3}^{\prime}-\alpha_{2}\right) h+\left(\beta_{2}^{\prime}-\beta_{3}\right) k} \\
& {[0.2]-[4.6]=\left(\alpha_{3}^{\prime}-\alpha_{3}\right) h+\left(\beta_{3}^{\prime}-\beta_{3}\right) k} \\
& {[0.2]-[6.8]=\left(\alpha_{4}^{\prime}-\alpha_{4}\right) h+\left(\beta_{4}^{\prime}-\beta_{4}\right) k} \\
& {[0.2]-[8 . b]=\left(\alpha_{5}^{\prime}-\alpha_{5}\right) h+\left(\beta_{5}^{\prime}-\beta_{5}\right) k}
\end{aligned}
$$

The comparisons of $[0 \cdot 3]$ on the silver scale with $[a \cdot 3][3 \cdot 6][4 \cdot 7][7 \cdot b]$ are similarly effected.
Table V.

[a.2]	[2.4]		[4.6]		[6.8]		[8.6]	
Left Lines. \quad Right Lines.	Left Lines.	Right Lines.						
+ 9.skifor	$16 \cdot 1 h+1{ }_{1} \cdot 2 k$	$16 \cdot 8 h+35 \cdot 6 k$	$16.8 h+34.8 k$	$16 \cdot 4 h+43 \cdot 8 k$	$14^{3} 3 k+44^{6} k{ }^{1}$	$15 \cdot \pm k+59 \cdot 3 k$	$15 \cdot 6 h+{ }_{14} \cdot 6 k{ }^{1}$	$14.4 h+30 \cdot 8 k$
$7 \cdot 0 h+12 \cdot 2 k 8 \cdot 8 h+18 \cdot 0 k$	$1 \cdot 1 \cdot \frac{76 k}{1}$	$1 \times 7 h+259 \%$	$1 \mathrm{H} \cdot \mathrm{I} k+8.3 k 1$	$10 \cdot 9 h+16 \cdot 2 k$	$10 \cdot 2 h+18.8 k$	$8 \cdot 7 h+33 \cdot 6 k$	$16 \cdot 1 k+7 \cdot 3 k 1$	$15 \cdot 5 h+21 \cdot 2 k$
$17 \cdot 0 h+15 \cdot 2 k 1_{17} \cdot 12+23 \cdot 12$	$19^{\cdot 2} h+5_{5}{ }^{1} k k^{1}$	$177 h+34^{8} k$	$15.4 k+15.1 k$	$15 \cdot 12+23 \cdot 3 k$	$16.0 k+15.12 k$	$15 \cdot 6 k+29.2 k$	$15.5 h+13.5 k$	$14^{\circ} 7 h+29^{\circ} 0 k$
$16.0 h+13.0 k 16.5 h+19.6 k$	$15 \cdot 0 h+7 \cdot 7 k{ }_{1}$	$16 \cdot 7 h+25 \cdot 3 k$	$15.9 h+10.6 k$		$10 \cdot 5 k+9 \cdot 2 k$	$11 \cdot 2 k+22 \cdot 5 k$	$2 \cdot 2 h+1 \cdot 3 k$	$8.5 k+20.3 k$
$15.5 h+21.7 k 14.7 h+29.8 k$	$13.5 k+16.7 k{ }^{1}$	$13.9 h+35^{\circ} 4^{k}$	${ }_{5}^{5} 3 k+12 \cdot 2 k{ }^{1}$	$16 \cdot 4 h+19.3 k$	$18 \cdot 2 h+16 \cdot 2 k$	$17 \cdot 6 h+32 \cdot 6 h$		$19 \cdot 1 / 2+22 \cdot 9 k$
$20.0 h+28.6 k 16.0 h+39.9 k$	$12 \cdot 2 h+2 \% k$	$9 \cdot 2 h+25^{\circ} k$	$6.1 h+74 k$ 1	$11 \cdot 9 h+97 k$	$15 \cdot 3 k+3.5 k{ }^{2}$	$20 \cdot 2 h+14 \cdot 0 k$	$18 \cdot 1$	$13 \cdot 8 h+32 \cdot 2 k$
$15.8 h+23.0 k 16.7 n+30.5 k$	$15 \cdot 4 h+20.0 k{ }^{1}$	$15.0 h+39^{\circ} 2 k$	$13.12+19.1 k$	$19 \cdot 2 k+2 \mathrm{I}^{2} 2 k$	${ }^{3} 3^{7} k+16 \cdot 1 k{ }^{1}$	IIP9 $2+32 \cdot 1 k$	$\left\|3^{\circ} 5 h+23^{\circ} 4 h\right\| 1$	$16 \cdot 1 h+35^{\prime} k$
$14.2 h+7.7 k 15.5 h+14.2 k$	$13 \cdot 8 k+13 k{ }_{1}$	$18.0 h+154 k$	$12 \cdot 6 h+7 \cdot 2 k$	$13 \cdot 8 h+13 \cdot 7 k$	$8 \% h+4 \cdot 1 k$	$9 \cdot 5 h+1{ }^{\prime} \cdot 2 k$	$5 \cdot 8 h+8 \cdot 4 k 1$	$11 \cdot 6 h+1 \% \cdot 1$
$18 \cdot 0 h+20 \cdot 1 h \mid 23 \cdot 14+23.3 k$	$20 \cdot 8 k+18 \cdot 1 k 2$	$23 \cdot 12+35 \cdot 0 k$	$15^{\prime} 7 h+16 \cdot 8 k$	$19^{\prime} 9 h+21^{\prime} \cdot k$	1%	$2 r^{\prime} 7 k+25^{6} k$	$15 \cdot 6 h+17.0 k$ 1	$14 \cdot 2 h+32 \cdot 2 k$
$19^{\prime 1} k+13 \cdot 3 k \cdot 25 \cdot 4 h+15 \cdot 6 k$	$23.9 k+9.5 k{ }^{2}$	$27 \cdot 1 h+24 \cdot 4 k$	$23 \cdot 9 h+12 \cdot 1 k$	$28 \cdot 1 h+17^{\prime} \cdot k$	$18.6 h+0.8 k$	$20 \cdot 2 h+12 \cdot 4 k$	$18 \cdot 5 k+20 \cdot 8 k{ }^{2}$	$21 \cdot 3 h+33 \cdot 2 k$
$10.5 h+16.0 k{ }_{12} 2.4 h+22.6 k$	${ }_{15} 0^{\circ} h+9^{.2} k{ }^{1}$	$12 \cdot 8 h+30 \cdot 1 k$	$9.9 h+18 \cdot 9 k 1$	$18.4 k+20 \cdot 3 k$	$16.0 k+16.9 k$	$16.5 h+30 \cdot 9 k$		$5 \cdot 2 h+30 \cdot 5 k$
${ }_{13} \cdot 7 h+13.8 k \cdot 54^{\prime} 5 h+21^{\circ} \cdot 0 k$	$13.9 k+1.0 k 1$	$1596+16 \cdot 5 k$	$13 \cdot 6 k+1 \cdot 5 k 1$	$16 \cdot 4 h+r^{2} k$	$158 k+53 k$	$16.6 h+16 \cdot 6 k$	$8 \cdot 14+149 k$	8. $14+29.5 k$
$15^{\prime} 1 h+19.4 k 0.5 h+42 \cdot 3 k$	$4 \cdot \mathrm{I} k+5{ }^{\text {a }}$ k ${ }^{1}$	$11 \cdot 5 h+16.9 k$	$10 \cdot 9 h+2000 k$	$8 \cdot 8 h+30^{\prime} 9 k$	$12 \cdot 2 h+9.5 k$	$9 \cdot 2 h+26 \cdot 7 k$	$7 \cdot 6 h+170 k$	$13.5 h+26 \cdot 8 k$
$10 \cdot 2 h+17.3 k 15.0 h+21.12 k$	$14.9 h+55 \cdot 5 k$	$14^{\circ} 7 h+34^{\circ} \mathrm{I} k$	174 4 h $+157 k$	$19.7 k+22.3 k$	$15 \cdot 1$	$16 \cdot 1 h+30 \cdot 3 k$	$18.9 k+19.5 k$	$k+32 \cdot 1 k$
$10 \cdot 1 h+19.9 k 8.6 h+28.8 k$	$7 \cdot 6 h+4 \cdot 8 k 1$	$10^{\circ} 5 h+21^{\circ} 1 . h$	$5 \cdot 8 h+10 \cdot 0 k$	$113 h+11 \% k$	$8 \cdot 5 h+11 \cdot 1 k$	$\%^{\prime} \mathrm{I} h+27 \cdot 4 k$	$5 \cdot 2 h+3 \cdot 6 k$	$5 \cdot 2 h+18 \cdot 0 k$
$16.9 h+6.0 k 15.5 h+16.4 k$	$21^{\prime} 2 h+19 \cdot 3 k{ }_{1}$	$16 \cdot 6 k+40 \cdot 9 k$	$30 \cdot 2 k+17 \cdot 5 k$	$33 \cdot 0 h+23 \cdot 4 k$	$21 \cdot 3 h+21 \cdot 2 k$	$24^{1} h+3{ }^{1} 9{ }^{k}$	$26.5 h+13.6 k \mid 2$	2.5k+30.5k
$12 \cdot 1 h+16 \cdot 5 k 18 \cdot 2 h+18 \cdot 3 k$	$20 \cdot 9 h+22 \cdot 3 k$	$21 \cdot 6 k+39 \cdot 4 k$	$21.8 k+15 \cdot 5 k$	${ }_{25} 51 / 20 \cdot 3 k$	$1{ }^{\prime} \cdot 3 h+20 \cdot 1 k$	$23 \cdot 2 h+2 j^{\prime} \cdot{ }^{2} k$	$13 \cdot 2 h+18 \cdot 8 k$ I	$14^{\circ} \circ h+33 \cdot 0 k$
$6 \cdot 0 h+4 \cdot 7 k 16 \cdot 1 h+3 \cdot 2 k$	$54.4+5.5 k$	$15 \cdot 6 k+1{ }^{1} \cdot 5 k$	$2 \cdot 4 h+16 \cdot 5 k$	$5 \cdot 5 h+21 \cdot 6 k$	$12 \cdot 9 h+29.5 k$	$4 \cdot 8 h+52 \cdot 3 k$	$6 \cdot 3 h+19.6 k$	$8 \cdot 3 k+31 \cdot 1 k$
$4 \cdot 2 h+15 \cdot 5 k 3 \cdot 7 h+24 \cdot 2 k$		$29 \cdot 2 h+2.54$		$20 \cdot 2 h+24 \cdot 6 h$	$25.5 k+75 k$	$24^{\cdot} \times h+24^{\prime} \times k$	$18.7 h+9.6 k{ }^{2}$	1.5 $k+20 \cdot 9 k$
$14 \cdot 6 h+12.12 k 14.9 h+20.2 k$	$9 \cdot 0 k+55^{\circ} k{ }^{1}$	$16 \cdot 4 h+27 \cdot 5 k$	$8 \cdot 5 h+13 \cdot 5 k$	$16.6 h+12.2 k$	$9 \cdot 6 h+5 \cdot 4 k$	$15^{\prime} 7 h+14 \cdot 5 k$	$7 \cdot 8 h+3 \cdot 6$	$8 \cdot 1 h+18 \cdot 3 k$
$15 \cdot 1 h+13.8 k 11.6 h+26.4 k$	$\mathrm{r}_{5} \cdot 2 h+2 \mathrm{I}^{4} 4 k$	$12 \cdot 6 h+43 \cdot 5 k$	$5 \cdot 0 h+28 \cdot 5 k$	$8 \cdot 3 h+33 \cdot 4 k$	$8 \cdot 1.4+14.5 k$	$14^{\circ} 0 k+23.5 k$	$4.7 h+13.8 k$	$10^{\prime} 7 h+23^{\prime} 4 k$
$19.5 k+16 \cdot 2 k 17 \cdot 6 h+27.5 k$	$20^{\prime} h t+2 r^{\prime} \cdot 6 k^{2}$	$20 \cdot 4 h+39^{\prime} 7 k$	$20 \cdot 6 h+17 \cdot 6 k \mid 2$	$24 \cdot 9 h+2 \mathrm{P} \cdot 5 k$	$15.12+12.5 k$	$14.6 h+27 \cdot 9 k$	$175 \%+$	$+16.9 k$
13.1 $h+16 \cdot 2 k \times 1 \cdot 5 h+25.8 k$	${ }_{17} 0^{\circ} h+18.9 k$	$\mathrm{XI} \cdot 3 h+43 \cdot 3 k$	$15.2 h+17.6 k$	$7 \cdot 9 h+32 \cdot 6 k$	$9.0 h+10 \cdot 4 k$	$15.6 h+18.6 k$	$9 \cdot 6 h+5 \cdot 4 k$	$17 \cdot 5 h+12 \cdot 5 k$
$19.5 h+13.3 k 21 \cdot 5 h+19.8 k$	$2 \mathrm{I} \cdot 3 h+20 \cdot 1 k{ }^{\text {a }}$	$32 \cdot 1 h+28 \cdot 1 k$	$10.5 h+10.6 k$	$12 \cdot 4 h+16 \cdot 4 k$	$6 \cdot 5 h+8 \cdot 5 k$	$13 \cdot 6 h+16 \cdot 1 k$	$8 \cdot 4 h+7 \cdot 5 k$	$115.5 h+19 \cdot 6$
$11.9 h+15.0 k \times 5.2 h+20.5 k$	$19 \cdot 8 h+14 \cdot 9 k{ }^{2}$	$22 \cdot 0 h+31 \cdot 5 k$	$74 k+55 k$	$12 \cdot 0 h+7 \cdot 8 k$	$8 \cdot 6 k+13 \cdot 8 k$	$9 \cdot 6 h+27 \cdot 4 k$	$8 \cdot 6 h+28 \cdot 2 k$	$32 \cdot 9 h+18 \cdot 9 k$
14.65 1 + $22 \cdot 76 k$			R	$16 \cdot 14 h+20 \cdot 53 k$	$13 \cdot 814+13^{\prime} 7^{8 k}$	$15 \cdot 06 h+26.98 k$	$12.99 h+13.08 h$	$15 \cdot 25 h+25.46 k$

Table VI．
or determining Errors of Tenths of Inches on OF．
Comparisons with o－3 of Silver Scale．

$\underset{i}{~}$	它	 $+++++++++++++++++++++++++$
		 $++t+++++++++t++++++++++++$
$\underset{\dot{\text { I }}}{ }$	安	 $+++++++++++++++++++++++++$
		 $+++++++++++++++++++++++++$
$\begin{aligned} & \stackrel{9}{9} \\ & \dot{\oplus} \end{aligned}$		
		 $+++++++++++++++++++++++++$
$\begin{aligned} & \mathbf{m} \\ & i \end{aligned}$	浣	
	宮	 $+++++++++++++++++++++++++$

Let the lengths of the spaces on the silver scale be

$$
\begin{aligned}
& {[0.2]=\frac{21}{10}+z} \\
& {[0.3]=\frac{3 I}{10}+z^{\prime}}
\end{aligned}
$$

and let $\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5}$ be the observed excesses of the space [$0 \cdot 2$] of the silver scale over

$$
\begin{align*}
& z-x_{2} \quad-\alpha_{1}=0 \tag{11}\\
& z-x_{4}+x_{2}-\alpha_{2}=0 \\
& z-x_{\mathrm{s}}+x_{s}-\alpha_{s}=0 \\
& z-x_{\mathrm{s}}+x_{\mathrm{i}}-\alpha_{1}=0 \\
& z \quad+x_{\mathrm{s}}-\alpha_{\mathrm{j}}=0 \\
& z^{\prime} \quad x_{3} \quad-\beta_{1}=0 \\
& z^{\prime}-x_{\mathrm{i}}+x_{3}-\beta_{3}=0 \\
& z^{\prime}-x_{7}+x_{4}-\beta_{3}=0 \\
& z^{\prime} \quad+x_{7}-\beta_{4}=0
\end{align*}
$$

We have here 9 equations containing eight unknown quantitics. Solving them by the method of least squares-

$$
\begin{aligned}
& 0=5 z \quad-\alpha_{1}-\alpha_{2}-\alpha_{3}-\alpha_{4}-\alpha_{3} \\
& 0=4 z^{\prime} \quad+x_{4}-x_{0}-\beta_{1}-\beta_{2}-\beta_{3}-\beta_{3} \\
& 0=\quad+2 x_{3} \quad-x_{4}+\alpha_{1}-\alpha_{2} \\
& 0=\quad+2 x_{\mathrm{i}} \quad-x_{\mathrm{i}}+\beta_{1}-\beta_{2} \\
& \circ=\quad z^{\prime}-x_{2} \quad+3 x_{4}-x_{i}-x_{7}+\alpha_{2}-\alpha_{3}-\beta_{3} \\
& \circ-z^{\prime} \quad-x_{\mathrm{s}}-x_{4}+3 x_{\mathrm{i}} \quad-x_{\mathrm{s}}+\alpha_{3}-\alpha_{4}+\beta_{3} \\
& 0=\quad-x_{4}+2 x_{7}+\beta_{3}-\beta_{4} \\
& \circ=\quad-x_{3} \quad+2 x_{8}+\alpha_{4}-\alpha_{5}
\end{aligned}
$$

Write A B CDEFGH for the absolute terms of these equations, and the values of $z z^{\prime} x_{2} x_{3} x_{4} x_{6} x_{7} x_{8}$ will, by the solution of the equations, be found to be :

$$
\begin{align*}
& \mathrm{O}=5 z+\mathrm{A} \tag{12}\\
& 0=20 z^{\prime}+6 \mathrm{~B}-\mathrm{C}+\mathrm{D}-2 \mathrm{E}+2 \mathrm{~F}-\mathrm{G}+\mathrm{H} \\
& \mathrm{O}=20 x_{2}-\mathrm{B}+\frac{27}{2} \mathrm{C}+\frac{3}{2} \mathrm{D}+7 \mathrm{E}+3 \mathrm{~F}+\frac{7}{2} \mathrm{G}+\frac{3}{2} \mathrm{H} \\
& 0=20 x_{3}+\mathrm{B}+\frac{3}{2} \mathrm{C}+27 \mathrm{D}+3 \mathrm{E}+7 \mathrm{~F}+\frac{3}{2} \mathrm{G}+\frac{7}{2} \mathrm{H} \\
& 0=10 x_{4}-\mathrm{B}+\frac{7}{2} \mathrm{C}+\frac{3}{2} \mathrm{D}+7 \mathrm{E}+3 \mathrm{~F}+\frac{7}{2} \mathrm{G}+\frac{3}{2} \mathrm{H} \\
& \circ=10 x_{6}+\mathrm{B}+\frac{3}{2} \mathrm{C}+\frac{7}{2} \mathrm{D}+3 \mathrm{E}+7 \mathrm{~F}+\frac{3}{2} \mathrm{G}+\frac{7}{2} \mathrm{H} \\
& 0=20 x_{7}-\mathrm{B}+\frac{7}{2} \mathrm{C}+\frac{3}{2} \mathrm{D}+7 \mathrm{E}+3 \mathrm{~F}+\frac{27}{2} \mathrm{G}+\frac{3}{2} \mathrm{H} \\
& \circ=20 x_{8}+\mathrm{B}+\frac{3}{2} \mathrm{C}+\frac{2}{2} \mathrm{D}+3 \mathrm{E}+7 \mathrm{~F}+\frac{3}{2} \mathrm{G}+\frac{27}{2} \mathrm{H}
\end{align*}
$$

Now, each of the absolute terms in the original equations is the mean of 25 different determinations ; consequently the weights of $x_{2} x_{3} x_{4} x_{8} x_{7} x_{8}$ are:

So that the 6 errors are determined with very nearly equal precision.
If we restore to $A \mathrm{BCDEFGH}$ their values in terms of $\alpha_{1} \alpha_{2} a_{3} \alpha_{4} \alpha_{5} \beta_{1} \beta_{1} \beta_{3} \beta_{4}$ we obtain values of $x_{2} x_{3} x_{4} x_{0} x_{7} x_{8}$ as follows:

$$
\begin{align*}
& 40 x_{2}=-27 \alpha_{1}+13 \alpha_{2}+8 \alpha_{3}+3 x_{4}+3 \alpha_{5}-5 \beta_{1}-5 \beta_{2}+5 \beta_{3}+5 \beta_{4} \tag{14}\\
& 40 x_{3}=-3 \alpha_{1}-3 \alpha_{2}-8 \alpha_{3}+7 \alpha_{4}+7 \alpha_{5}-25 \beta_{1}+15 \beta_{2}+5 \beta_{3}+5 \beta_{4} \\
& 40 x_{4}=-14 \alpha_{1}-14 \alpha_{2}+16 \alpha_{3}+6 \alpha_{4}+6 \alpha_{5}-10 \beta_{1}-10 \beta_{2}+10 \beta_{3}+10 \beta_{4} \\
& 40 x_{6}=-6 \alpha_{1}-6 \alpha_{12}-16 \alpha_{3}+14 \alpha_{4}+14 \alpha_{5}-10 \beta_{1}-10 \beta_{2}+10 \beta_{3}+10 \beta_{4} \\
& 40 x_{7}=-7 \alpha_{1}-7 \alpha_{2}+8 \alpha_{3}+3 \alpha_{4}+3 \alpha_{5}-5 \beta_{1}-5 \beta_{2}-15 \beta_{3}+25 \beta_{4} \\
& 40 x_{3}=-3 \alpha_{1}-3 \alpha_{2}-8 \alpha_{3}-13 \alpha_{4}+27 \alpha_{5}-5 \beta_{1}-5 \beta_{2}+5 \beta_{3}+5 \beta_{4}
\end{align*}
$$

The values of $\alpha_{1} \alpha_{2} \ldots \beta_{4}$ oblained from Tables V., VI. are :

$$
\begin{align*}
& \alpha_{1}=064 h+7.58 k \tag{15}\\
& \alpha_{2}=1.79 h+16.74 k \\
& \alpha_{3}=2.43 h+5.65 k \\
& \alpha_{4}=1.25 h+13.20 k \\
& \alpha_{8}=2.26 h+12.38 k \\
& \beta_{1}=-0.58 h+10.33 k \\
& \beta_{2}=2.32 h+3.15 k \\
& \beta_{3}=1.4 \mathrm{I} h+5.26 k \\
& \beta_{4}=3.94 h+7.51 k
\end{align*}
$$

whence we get finally-

$$
\begin{align*}
& x_{2}=\mathrm{I} .35 h+3.28 k \tag{I6}\\
& x_{3}=1.85 h-2.16 k \\
& x_{1}=1.55 h-2.59 k \\
& x_{0}=0.79 h+2.87 k \\
& x_{7}=2.04 h-0.17 k \\
& x_{8}=0.90 h+1.02 k
\end{align*}
$$

4.

Each of the tenths [2.3] [6.7] is subdivided into ten parts, and it remains to ascertain the errors of these hundredth-lines.

It is impossible to adjust a microscope to focus with the certainty of having no error in such adjustment. If a microscope be repeatedly brought to focus over a given surface, and if the distance of the object glass from the surface were measured each time, small differences would be found, very small indeed, but yet sufficient to influence the measure of a given space upon the surface under view. The crror arising in a measurement from this cause is proportional to the leugth measured: hence it is not desirable to measure larger quantitics than can be helped. The measurement of the hundredths in each tenth was effected in this manner: The scale is first levelled and brought to focus with the greatest nicety; the left-hand bundredth is brought into the field and placed accurately in the centre, so that the defining lines are equidistant from and on opposite sides of the zero position of the wires. The left line is bisected (with one micrometer reading), and then the cross is carried over to the right line, which is bisected, and the micrometer read. The scale (focus remaining unaltered) is now run T_{10}^{1} of an inch to the left, until the second hundredth occupies exactly the position just vacated by the first. The cross will be found almost bisecting the right line; the bisection is made, the micrometer read, and the cross brought over by the revolution of the micrometer screw to the left line, which is bisected and read. The scale is again moved one hundredth of an inch to the left, and the third hundredth occupies the position just vacated by the second; it is then measured,-and so on. When the scale has been moved ten times one hundredth of an inch to the left, the last bundredth will be in the centre of the field of view, and its measurement closes the operation. We have now from 20 micrometer readings the measures of the ten spaces, each measure affected with the same error, arising from the error of focus, inasmuch as the focus remained unaltered during the operation. If this be called one series, each series will be affected with a different error as the focus is re-adjusted for each series.

The hundredths in each tenth have been measured twenty times each with each microscope in the manner explained above. The mean results of these measures, with their probable errors, are given in the following Table, expressed in divisions of the respective micrometers. The hundredths are numbered from left to right.

Table VII.

Tenth [2.3]			Tenth [6.7]		
$\left\lvert\, \begin{aligned} & \text { Number } \\ & \text { of Hun- } \\ & \text { dredths. } \end{aligned}\right.$	H	K	H	K	Numbe of Huu dredth
1	$356 \cdot 99 \pm{ }^{10}$	$355{ }^{\circ} 49{ }^{11}$	$346 \cdot 54 \pm{ }^{\circ}$	$345.84 \pm{ }^{\text {\% }}$	1
${ }_{3}^{2}$	$\frac{3+8 \cdot 18}{}+12$	${ }_{3+6 \cdot 83} \pm \cdot 12$	$350.69 \pm{ }^{\text {¢ }}$	${ }_{349} \cdot 22 \pm$ ¢ 10	$\stackrel{2}{3}$
3 4 4	$3+6.63 \pm .13$ $348.30 \pm .12$			$345^{27}{ }^{\text {\% }} \pm{ }^{10}$	3
5	${ }_{3+8.77}^{34.30} \pm 15$		${ }_{347}^{350.53} \pm{ }^{\text {¢ }}$		$\stackrel{4}{5}$
${ }_{6}$	$350 \cdot 57 \pm 11$	$3+8.95 \pm{ }^{12}$	$349.4 \pm{ }^{\circ}$	348.12 ± 10	6
7		$347^{\circ} 6 \pm \pm{ }^{12}$	$347.08 \pm{ }^{12}$	$3+5.59 \pm{ }^{12}$	7
8 9		${ }_{3}^{345^{\circ} 90} \pm{ }^{\circ}{ }^{\circ} \mathrm{og}$	${ }_{35156}+\frac{11}{}$	$350 \cdot 50 \pm 12$	8
9 10	$3+8 \cdot 90 \pm \pm{ }^{11}$ $3+6 \cdot 19$		$349 \cdot 54 \pm 10$ $35^{18}+ \pm{ }^{10}$		10

N.B.-The probable errors are determined from the differences of the 20 individual measures in each case with their mean.

From these measures we may readily find the errors of the nine subdividing lines in each tenth．If $n_{1} n_{2} \cdots n_{10}$ be the successive measures of the tenths，the errors of division will be ：

$$
\begin{align*}
& \frac{1}{10}\left(9 n_{1}-n_{2}-n_{3}-n_{4}-n_{5}-n_{6}-n_{7}-n_{\mathrm{B}}-n_{9}-n_{10}\right) \tag{17}\\
& \frac{1}{10}\left(8 n_{1}+8 n_{2}-2 n_{3}-2 n_{4}-2 n_{5}-2 n_{0}-2 n_{7}-2 n_{8}-2 n_{9}-2 n_{10}\right) \\
& \frac{1}{10}\left(7 n_{1}+7 n_{2}+7 n_{\mathrm{a}}-3 n_{4}-3 n_{5}-3 n_{0}-3 n_{7}-3 n_{8}-3 n_{0}-3 n_{10}\right) \\
& \frac{1}{10}\left(6 n_{1}+6 n_{2}+6 n_{3}+6 n_{4}-4 n_{5}-4 n_{0}-4 n_{7}-4 n_{8}-4 n_{0}-4 n_{10}\right) \\
& { }_{10}^{10}\left(5 n_{1}+5 n_{2}+5 n_{9}+5 n_{4}+5 n_{5}-5 n_{0}-5 n_{7}-5 n_{8}-5 n_{9}-5 n_{10}\right) \\
& { }_{10}^{1}\left(4 n_{1}+4 n_{2}+4 n_{3}+4 n_{4}+4 n_{5}+4 n_{6}-6 n_{7}-6 n_{9}-6 n_{0}-6 n_{10}\right) \\
& \frac{1}{10}\left(3 n_{1}+3 n_{2}+3 n_{3}+3 n_{4}+3 n_{5}+3 n_{6}+3 n_{7}-7 n_{8}-7 n_{8}-7 n_{10}\right) \\
& \frac{1}{10}\left(2 n_{1}+2 n_{2}+2 n_{3}+2 n_{4}+2 n_{5}+2 n_{6}+2 n_{7}+2 n_{\mathrm{B}}-8 n_{\mathrm{g}}-8 n_{10}\right) \\
& \frac{1}{10}\left(n_{1}+n_{3}+n_{3}+n_{4}+n_{5}+n_{0}+n_{7}+n_{\mathrm{B}}+n_{0}-9 n_{10}\right)
\end{align*}
$$

If we substitute in these expressions the results shown in the preceding Table，we shall obtain the errors of division correctly ；but it would be incorrect to infer the probable errors of these quantities in the usual way from the probable errors shown in the Table when introduced into the formulæ（16）．The probable errors in the preceding Table Vl． are affected，and necessarily，by the errors of focal adjustment in the microscope；whereas if we apply the formula（ 16 ）to each series of micrometer measures as described above，we shall eliminate the focal error from that series；or，in other words，the errors of division resulting from any single series of measures are not affected by the focal error of that series． This is evident，because the sum of the coefficients of the quantities n is zero for each error of division；consequently a constant error disappears．Therefore，we must compute the errors of division from each series，and then compare individual results with their means to obtain the real probable errors．The following Table contains the errors of division with probable errors of such determinations．

Table ViII．

Errors of Subdivisious of［2．3］			Errors of Subdivisions of［6．7］		
Line．	H	K	H	K	Line．
1	＋7．91 ${ }^{\text {P }} 10$	$+7.82 \pm 11$	$-2.57 \pm{ }^{\circ} 0$	$-2.00 \pm .07$	1
2	＋ 701 ± 14	$+6.98 \pm 10$	-0.99 ± 16	$-0.61 \pm{ }^{\circ 09}$	2
3	44.56 ± 10	$+4.64 \pm 16$	-3.63 ± 10	-3.17 ± 11	3
4	＋ $3 \cdot 78 \pm{ }^{10}$	$+3.81 \pm 13$	-2.31 ± 15	-170 ± 19	4
5	＋3＊47 ${ }^{\text { }} 17$	＋ $3.66 \pm{ }^{19}$	-3.89 ± 11	－ $3 \cdot 25 \pm 13$	5
6	＋ $4^{\circ} 9^{6}$ 士 ${ }^{18}$	＋4．94士 17		－ 2.97 ± 18	6
7	＋ $4 \cdot 36 \pm{ }^{\prime} 15$	＋4．91 $\pm .15$	－ $5 \cdot 59 \pm{ }^{18}$	$-5.21 \pm{ }^{13}$	7
8	＋3．06 $\pm{ }^{13}$	$+3 \cdot 14 \pm{ }^{12}$	$-3 \cdot 14 \pm{ }^{13}$	$-2.55 \pm{ }^{13}$	8
9	＋ $2 \cdot 88 \pm{ }^{\text { }}$ \％	＋ $2 \cdot 76 \pm{ }^{\text {¢ }}$ 。 08	$-2.72 \pm .00$	$-2.5 \pm \pm 10$	9

These results are expressed in terms of the divisions of the respective microscopes． They are not the absolute errors of division of the lines，but are only the errors as sub－ dividing into tenths the spaces［2．3］［6．7］．

There is one line in particular in each tenth which demands especial attention；namely， in $[2 \cdot 3]$ ，the sixth line from 2 towards 3，and fourth from 3 towards 2：we shall designate this line by the letter τ ；and in［6．7］，the second line from 6 towards 7 ，and eighth from 7
towards 6: this line we shall designate by the letter μ. These two lines are those which come into play in the measurement of the Toise and Metre respectively; we shall therefore give the actual results of the micrometer measurements in the twenty series. They are shown in the following Table :-

Table IX.

Tenth [2.3]				Tenth [6.7]			
H		K		H		K	
[2.r]	[$7 \cdot 3]$	[2. τ]	[$r \cdot 3]$	[6. μ]	[$\mu \cdot 7$]	[6. μ]	[$\mu \cdot 7]$
$2099 \cdot 6$	$1392^{\circ} \mathrm{O}$	2093.2	$13^{8} 4^{\circ}$	698.4	2794*2	$694 \cdot 8$	2780.1
20978	$1392{ }^{\circ}$	2088.7	1384.6	$698 \cdot 3$	27960	694.2	2782.0
$2098 \cdot 2$	$13^{88.8}$	2089-8	${ }_{1} 3^{8} 3.6$	$696 \cdot 9$	27916	694.5	27843
20977	1392.7	2090*9	${ }_{1} 3^{88.4}$	$698{ }^{\circ}$	$2794{ }^{\circ}$	694.5	2783.2
$2100 \cdot 3$	1391.5	2087.3	${ }^{1} 385 \%$	698.0	27917	$694 \cdot 8$	$2779{ }^{6}$
2102.8	$1391 \cdot 2$	2094 3	${ }_{1} 3^{87} 7^{4}$	6973	27924	695*	2784°
2096 1	1391.2	2090.9	$13^{8} 3^{\circ}$	$696 \cdot 3$	2795°	693.9	2784^{1}
21047	$13^{8} 9 \cdot 8$	20913	$1384{ }^{\circ}$	6977	$2793{ }^{\circ} 9$	695.7	2782.8
2099.9	$1392{ }^{\circ}$	20947	${ }_{1} 388.2$	696.2	27914	694.0	$2781 \cdot 0$
2102.9	${ }^{1} 392.5$	2089.9	${ }_{1}{ }^{1887} 7$	6960	$2795 \cdot 1$	697.0	27853
2099.4	1393.7	$2085^{\text {I }}$	${ }_{138} 3^{\circ} 2$	697.4	2793.7	6954	$2786 \cdot 5$
20977	1388.7	2092.5	1387.1	$698 \cdot 1$	27934	694.4	$2781 \cdot 7$
$2095{ }^{\circ} 9$	13904	2087.0	$13^{8} 4^{.6}$	697.5	$2794 \cdot 1$	694.7	2780.9
2097.7	$13^{88} 9^{\circ} 9$	2090.9	$13^{8} 5^{\circ} 6$	697.9	$2794{ }^{\prime} 9$	$696 \cdot 2$	$2788 \cdot 7$
21016	1391.6	2092.3	${ }^{1386.7}$	$696 \cdot 3$	$2793{ }^{\circ}$	695*I	$2780 \cdot 7$
2102.7	1392.5	2094.6	1385.5	6y6.6	280011	$696 \cdot 2$	$2787 \cdot 6$
2096 1	1390.2	2089.9	$13^{8} 4^{\circ} \mathrm{O}$	696.6	27924	694.4	2782.9
2099 ${ }^{\circ}$	${ }^{1392.5}$	2093.5	${ }^{1390 \%}$	6974	2792.3	695.4	2781.9
2095.2	1391.6	2089.9	$13^{8} 4.7$	6954	2795^{1}	$696 \cdot 3$	$2787{ }^{\circ}$
2103. ${ }^{\text {I }}$	${ }^{1391}{ }^{\circ} 9$	2092.1	$13^{86}{ }^{\circ}$	$698 \cdot 3$	$2793{ }^{\circ}$	$694 \cdot 5$	2781.2

Expressed in Micrometer Divisions of respective Microscopes.

The first and second columns, and the third and fourth, give the values of $n_{1}+\ldots n_{8}$ and $n_{7}+\ldots n_{10}$. The fifth and sixth columns, and the seventh and eighth, give $n_{1}+n_{2}$ and $n_{3}+\ldots n_{10}$. By (17) the errors of division of the lines τ and μ are

$$
\begin{array}{ll}
\tau \ldots r^{4}\left(n_{1}+\ldots n_{6}\right) & -\frac{6}{10}\left(n_{7}+\ldots n_{10}\right) \tag{18}\\
\mu \ldots r_{10}^{8}\left(n_{1}+n_{2}\right) & -\frac{2}{10}\left(n_{5}+\ldots n_{10}\right)
\end{array}
$$

Applying these formulx to the quantities in the preceding Table, we get the following results for the errors of division:-

Table \mathbf{x}.

Error of τ		Error of μ	
H	K	H	K
$+4.64$	+6.88	-0.12	-0.18
3.92	4.72	-0.56	-1.04
$6 \cdot 00$	$5 \cdot 76$	-0.80	- 1.26
$3+6$	3.32	- 0.48	- 104
$5 \cdot 2 \cdot 2$	3.74	+ 0.06	- 0.08
6.40	5.2	-0.64	- 0.80
3.72	$6 \cdot 56$	- 1.96	- 170
8.00	$5 \cdot 58$	- 0.62	- 0.00
$4 \cdot 76$	$4 \cdot 96$	-1.32	- I.00
5.66	$3 \cdot 34$	-2.22	+ 0.5+
3.54	$4 \cdot 12$	- 0.82	-0.98
5.86	4.74	-0.20	-0.82
$4 \cdot 12$	4.04	- 0.82	-0.42
5.14	5.00	- 0.66	-0.78
$5 \cdot 68$	4.90	-1.56	- 0.06
$5 \cdot 58$	6.54	-2.74	-0.56
43^{2}	5.56	- 1.20	- 1.06
4.10	$2 \cdot 86$	-0.54	- 0.06
3.12	$5^{11}+$	-2.70	-0.36
$+6.10$	+ 5.2+	+ $0.0+$	- $0.6+$

We shall consider the probable errors of these determinations after the values of h and k are ascertained.

5.

In Table IX., by adding together the quantities $[2 \cdot \tau]+[\tau \cdot 3]$ and $[6 \cdot \mu]+[\mu \cdot 7]$, we get the number of divisions of H or K which go to the spaces [2.3] [6.7]. Now, from (3)

$$
\begin{align*}
& {[2.3]=\frac{\mathrm{I}}{10}+x_{3}-x_{3}+\frac{x_{b}}{10}+\frac{x_{g}}{60}=\frac{1}{10}+0.49 k-5.40 k} \tag{19}\\
& {[6.7]=\frac{\mathrm{I}}{10}+x_{7}-x_{0}+\frac{x_{b}}{10}+\frac{x_{g}}{60}=\frac{\mathrm{I}}{10}+1.23 k-3.01 k} \tag{20}
\end{align*}
$$

We must here anticipate our results so far as to remark that $h-k$ is less than one $250^{\text {th }}$ part of h or k. We may, therefore, in the above expression put h for k or k for k, so that $[2.3]=\frac{1}{10} \mathrm{I}-4.9 \mathrm{I} h$ or ${ }_{10}^{1} \mathrm{I}-4.91 k$; and $[6.7]=\frac{1}{1_{0}} \mathrm{I}-1.78 h$ or $\mathrm{I}_{10}^{10} \mathrm{I}-1.78 \mathrm{k}$. In order, therefore, to ascertain the true number of divisions of H or K which are equivalent to a tenth of an inch, we must increase every measure of [2.3] by +4 . 9 ! divisions, and every measure of $[6 \cdot 7]$ by $+1 \cdot 78$ divisions.

The quantities taken from Table IX., so modified, will stand thus :-
Table XI.

H		K	
$\begin{aligned} & \text { No. of Divisious } \\ & \text { to } \frac{1}{1} \mathrm{I} . \end{aligned}$	Error, or excess of individual results above their mean.	$\begin{aligned} & \text { No. of Divisions } \\ & \text { to } \frac{1}{10} \mathrm{I} \text {. } \end{aligned}$	Error, or excess of individual resulls above their mean.
$3+96 \cdot 5$	$+2.2$	$34^{82} \cdot 1$	+ 1 2
$3494 \cdot 7$	+ 0.4	$3478 \cdot 2$	-2.7
3491.9	- 2.4	$3478 \cdot 3$	- 2.6
$3495{ }^{\circ} 3$	$+1 \cdot 0$	$3484 \cdot 2$	+ 33
$3496{ }^{\circ} 7$	+2.4	34775	- 34
3498.9	+ 4.6	$3486 \cdot 6$	+ 5.7
$3492 \cdot 2$	-2.1	$3478 \cdot 8$	- $2 \cdot 1$
3499.4	+ 5^{\prime}	$3481 \cdot 1$	$+0.2$
$3496 \cdot 8$	+25	$3487 \cdot 8$	+6.9
$3500 \cdot 3$	$+60$	$3482 \cdot 5$	+1.6
$3498 \cdot$	$+3.7$	$3+73.2$	- 77
34913	-3°	$348+5$	$+3.6$
$3491 \cdot 2$	- 3.1	$3+76 \cdot 5$	-4.4
$3492 \cdot 5$	- 1.8	$3481 \cdot 4$	$+0.5$
$3498 \cdot 1$	+ 38	3483.9	$+3{ }^{\circ}$
$3500 \cdot 1$	+ $5^{\circ} 8$	3485°	+ ${ }^{\circ} \mathrm{I}$
3491.2	-3.1	$3478 \cdot 8$	- 2.1
34964	+ $2 \cdot 1$	$3489 \cdot 3$	+ 8.4
34917	- 2.6	$3479{ }^{\circ} 5$	- 14
3499.9	+ 5.6	3483°	+ $2 \cdot 1$
3494.4	+.0.1	$3476 \cdot 7$	-4.2
$3496 \cdot 1$	+ 18	3478.0	- 2.9
$3490 \cdot 3$	- 4°	$3480 \cdot 6$	-0.3
3494.2	$-0^{\circ} 1$	$3479{ }^{\circ} 5$	- I. 4
3491.5	- 28	$3476 \cdot 2$	-47
3491.5	- 2.8	$3480 \cdot 8$	- OP^{1}
$3+93 \cdot 1$	- 1.2	$3479 \cdot 8$	- ${ }^{1.1}$
3493.4	- 0.9	$3480 \cdot 3$	-0.6
$3489 \cdot 4$	- 49	$3476 \cdot 8$	- 4.1
$3492^{\circ} 9$	-144	$3484^{\text {I }}$	+3.2
3492.9	- 14	$3483 \cdot 7$	+ 2.8
3493.3	-1.0 $-\quad .0$	$3477{ }^{\circ} 9$	- 3.0 -3.5
3493.4 3494.6	a $-\quad 09$ $+\quad 03$	3477% 3486.	-3.5 $+\quad 58$
$3494 \cdot 6$ 3491.1	$+\quad 03$ $-\quad 32$	$3486 \cdot 7$ $3477 \cdot 6$	+3.8 -3.3
$3498 \cdot 5$	+ 4.2	$34^{8} 5 \cdot 6$	+4.7
$3490 \cdot 8$	- 3.5	3479.1	- 1.8
$3491 \cdot 5$	- 2.8	3479.1	$\rightarrow \mathrm{I} \cdot 8$
$3492 \cdot 3$ $3493 \cdot 1$	$-\quad 20$ -1.2	$34^{8} 5^{1} 1$	+ 4.2
3493.1	-1.2	3477×5	- 34

The sum of the squares of the errors in the measures by H is 367.54 , in that by K 534.27. Consequently, the mean error in a single measurement of one tenth of an inch (in ten consecutive hundredths) by H is

$$
\sqrt{\frac{367.54}{40-1}}= \pm 3.07
$$

And the mean error in the same operation by K is

$$
\sqrt{\frac{534.27}{40-1}}= \pm^{9.70}
$$

The corresponding probable errors are

$$
\begin{array}{cc}
\mathrm{H} & \mathrm{~K} \\
\pm 2.07 & \pm 2.49
\end{array}
$$

Now, each of the errors in the above Table results from the sum of the errors of twenty single micrometer readings and the error due to a slight error in the focussing of the microscope. Let the probable errors resulting from this last cause be

$$
\varepsilon_{\mathrm{II}} \text { for } \mathrm{H} \text {, and } \epsilon_{\mathrm{K}} \text { for } K \text {, }
$$

on a measurement of 1000 divisions: then upon the tenth of an inch they will be

$$
3 \cdot 494 \varepsilon_{11} \text { and } 3 \cdot 4^{81} \varepsilon_{k}
$$

By a special investigation, the probable error of a single micrometer reading was found to be-

Observer, Captain Clarke, R.E. $\pm 0 \cdot 32$ micr. div.

$$
" \text { Quartermaster Steel, R.E. } \pm 0.31
$$

the same result being obtained for either microscope.
Now the sum of the squares of 20 such errors is $2{ }^{\circ} 00$; consequently the probable error in the measure of one tenth of an inch by H or K will be

$$
\begin{aligned}
& \mathrm{H} \ldots \ldots \sqrt{2 \cdot 00+3 \cdot 494^{2} \cdot \varepsilon_{\pi}^{2}} \\
& \mathrm{~K} \ldots . \operatorname{l} \sqrt{2 \cdot 00+3 \cdot 41^{2} \cdot \varepsilon_{K}^{2}}
\end{aligned}
$$

If now we compare this with the numerical quantities actually obtained, it appears that

$$
\begin{align*}
& 2.00+3.494^{2} \varepsilon^{\circ}{ }^{2}=4.28 \\
& 2.00+3.481^{4} \varepsilon_{\mathrm{x}}^{2}=6.20 \\
& \therefore \varepsilon_{u}=\frac{\sqrt{2.28}}{3.494}= \pm 0.432 \text { micr. div. } \tag{2I}\\
& \varepsilon_{\mathrm{X}}=\frac{\sqrt{4^{20}}}{3 \cdot 4^{8 \mathrm{I}}}= \pm 0.589 \text { micr. div. } \tag{22}
\end{align*}
$$

Consequently, if a space of n thousand divisions be measured by H or K , the probable error of such measure will be

$$
\begin{align*}
& \mathrm{H} \ldots \mathrm{I}+\sqrt{0.42^{2} n^{2}+20}=\sqrt{187 n^{3}+20} \tag{23}\\
& \mathrm{~K} \ldots \mathrm{l} \overline{\sqrt{0.589^{5} n^{2}+20}}=\sqrt{347 n^{2}+20} \tag{24}
\end{align*}
$$

If, for example, 250 divisions be measured, the probable error of the single measurement, expressed in divisious, is

$$
\begin{aligned}
& \mathrm{H} \ldots . . . \pm{ }^{0 \cdot 46} \\
& \mathrm{~K} \ldots . . . \pm{ }_{0 \cdot 49}
\end{aligned}
$$

If there were no focal error these quantities would be simply $0^{\circ}+5$. We gather, then, this very important result, that even in measuring such an unusually large space as 250 micrometer divisions, the probable error of a single determination is only increased from ± 0.45 to ± 0.46 or ± 0.49 by the probable error in focal adjustment of the microscope.

It appears from our last Table that the number of divisions to one tenth of an inch in the two microscopes is

$$
\begin{aligned}
& \text { for H } \ldots \ldots 3494 \cdot 3 \pm \frac{2 \cdot 07}{\sqrt{40}} \\
& \text { „ K } 3480^{\circ} 9 \pm \frac{2 \cdot 49}{\sqrt{40}}
\end{aligned}
$$

Consequently, the number of divisions to one inch is

$$
\begin{aligned}
& \text { for H } 34943 \pm 3 \cdot 3 \\
& \text { " K } 34809 \pm 3 \cdot 0
\end{aligned}
$$

Therefore h, k, being the values of one division in H and K respectively, and l an inch,

$$
\begin{align*}
& h=\frac{\mathrm{I}}{34943 \pm 3 \cdot 3} \tag{25}\\
& k=\frac{I}{34809 \pm 3 \cdot 9} \tag{26}
\end{align*}
$$

6.

It is convenient to have a unit of reference for small quantities, as micrometer measures, expansions, \&c. Such quantities, when expressed in inches, are encumbered with an inconvenient number of decimals, and they cannot well be expressed in micrometer divisions, as no two microscopes have divisions equivalent in magnitude. If we express the values of a division of H and K first obtained in inches, they become

$$
\begin{aligned}
& h=0.0000286180 \pm \cdot 0000000027 \\
& k=0.0000287282 \pm \cdot 0000000032
\end{aligned}
$$

The yard being the unit of length in this country, it seems reasonable to take as the unit of reference for small quantities the millionth part of the yard. Expressed in this unit, the quantities above become

$$
\begin{align*}
k & =0.79494 \pm \cdot 00008 \tag{27}\\
k & =0.79800 \pm \cdot 00009 \tag{28}
\end{align*}
$$

So that a division of either micrometer is about $\frac{8}{10}$ of the unit of reference.
In future all small quantities will be expressed with reference to this unit, the millionth part ($\cdot 000001$) of the yard, unless expressly stated otherwise.

7.

If we write out in full the set of 60 equations from which x_{g} is obtained in equation (4), and of which the quantities given in Table I. form the absolute terms, and if we substitute the actual values of k and k in these equations, we get the sum of the squares of the errors $5 \cdot 26$. Now in the 60 equations there are 30 quantities $z_{1} \ldots z_{30}$, and one quantity x, in all 31 unknown quantities: consequently the probable error of a single equation is

$$
\pm 0.674 \sqrt{\frac{5.26}{60-31}}= \pm 0.287
$$

and therefore for the value of x_{g} we have

$$
\begin{equation*}
x_{y}=-0.87 \pm \frac{.287}{\sqrt{60}}=-0.87 \pm \cdot 0.37 \tag{29}
\end{equation*}
$$

The equations (5) are in number 209: those in $z^{\prime \prime}$ are to be multiplied by $\sqrt{\frac{9}{15}}$ in forming the errors. If we substitute in these equations and in (8), (9), and (i0) the values of h and k, we get the sum of the squares of the 209 errors $=16.33$. Now the number of unknown quantities in these equations is 72 , consequently the probable error of a single equation is

$$
\begin{equation*}
\pm 0.674 \sqrt{209-7^{2}}= \pm 0.233 \tag{30}
\end{equation*}
$$

Consequently by (7) the probable errors of $x_{b} x_{c} x_{d} x_{c} x_{f}$ are

$$
\begin{align*}
& \pm{ }_{5}^{233} V_{18}^{11}= \pm \cdot 036 \tag{31}\\
& \pm \frac{\cdot 233}{5} \sqrt{17}= \pm \cdot 015 \\
& \pm \frac{\cdot 233}{5} \sqrt{18}= \pm \cdot 033 \\
& \pm \frac{\cdot 233}{5} \sqrt{18} \frac{17}{18}= \pm \cdot 005 \\
& \pm \frac{.233}{5} \sqrt{11}= \pm{ }^{18}=036
\end{align*}
$$

The equations (11) are in reality 225 in number, each of those written down being the mean of 25 similar equations. On substituting the values of h and k in (11), (15), and (16), we obtain for the sum of the squares of the 225 errors $71^{\circ} \circ 8$. The number of unknown quantities is 8 , consequently the probable error of an equation is

$$
\begin{equation*}
\pm 0.674 \sqrt{\frac{7 \cdot .08}{225-8}}= \pm 0.986 \tag{32}
\end{equation*}
$$

Therefore the probable errors of $x_{2} x_{3} x_{4} x_{5} x_{7} x_{8}$ are-see (13),

$$
\begin{align*}
& \pm \frac{.386}{5} \sqrt{ } \frac{27}{40}= \pm 0.063 \tag{33}\\
& \pm \frac{.386}{5} \sqrt{ } \frac{27}{40}= \pm 0.063 \\
& \pm{ }^{386} \sqrt{\frac{7}{10}}= \pm 0.064 \\
& \pm \frac{.386}{5} \sqrt{\frac{7}{10}}= \pm 0.064 \\
& \pm \frac{.386}{5} \sqrt{ } \frac{27}{40}= \pm 0.063 \\
& \pm \begin{array}{c}
386 \\
5
\end{array} \sqrt{\frac{27}{40}}= \pm 0.063
\end{align*}
$$

We now proceed to consider the errors of the lines τ and μ. The quantities in Table \mathbf{X}. being multiplied by the values of h and k become as in the next Table.

x_{τ}	Errors.	x_{μ}	Errors.
$+3.69$	-0.25	- 0.10	+0.54
$3 \cdot 12$	-0.82	-0.44	+ 0.20
4.77	+ 0.83	- 0.64	+ 0.00
$2 \cdot 75$	- 1.18	-0.38	+0.26
$4 \cdot 15$	+ 0.22	+0.05	+0.69
5.09	+ 115	-0.51	+ 0.13
$2 \cdot 96$	-0.98	- 1.56	-0.92
$6 \cdot 36$	+ 2.42	- 0.49	+ 0.15
3.78	-0.15	- 1.05	-0.41
4.50	+ 0.56	- 1.76	- 1.12
2.81	- 1.12	-0.65	- 0.01
$4 \cdot 66$	+0.72	-0.16	+0.48
3.27	-0.66	-0.65	- 0.01
4.09	$+0.15$	-0.52	+ 0.12
4.52	+0.58	- 1.24	- 0.60
$4 \cdot 44$	+ 0.50	- 2.18	- 1.54
3.43	-0.50	-0.95	-0.31
$3 \cdot 26$	-0.67	-0.43	+ 0.21
2.48	- 1.45	- 2.15	- 1.51
$4 \cdot 85$	+ 0.91	+ 0.03	+ 0.67
$5 \cdot 49$	+ 15	-0.14	+ 0.50
3.77	-0.17	- 0.83	- 0.19
4.60	+0.66	- 1.00	- 0.36
2.65	- 1.29	-0.83	
$2 \cdot 98$	-0.95	- 0.06	+ 0.58
4.21	+ 0.28	- 0.64	+ 0.00
5.23	+ 1.30	- 1.36	- 0.72
4.45	+ 0.52	- 0.00	+ 0.64
3.96 2.66	+ $+\quad 0.02$ $-\quad 1.27$	$\begin{array}{r}\text { a } \\ \hline\end{array}$	$\begin{array}{r}\text { a } \\ \hline\end{array}$
3.29	- 0.65	-0.78	-0.14
$3 \cdot 78$	-0.15	-0.65	- 0.01
3.22	-0.71	-0.33	$+0.3 \mathrm{r}$
3.99	+ 0.05	-0.62	+ 0.02
3.91	- 0.02	-0.05	+0.59
5.22	+ 1.28	-0.45	+ 0.19
4.44	+ 0.50	-0.84	-0.20
$2 \cdot 28$ 4.10	- 1.65	-0.05	+0.59
4.10 $+\quad 418$	+ 0.17	-0.29	+0.35
+ 4.18	+ 0.25	-0.5	+0.13

The sum of the squares of the crrors of x_{r} is 32.635 , consequently the probable error of the determination is

$$
\begin{equation*}
\pm .674 \sqrt{\frac{32 \cdot 635}{39 \times 40}}= \pm .098 \tag{34}
\end{equation*}
$$

The sum of the squares of the errors for x_{μ} is 12940 , consequently the probable error of the determination is

$$
\begin{equation*}
\pm \cdot 674 \sqrt{\frac{12 \cdot 940}{39 \times 40}}= \pm \cdot 061 \tag{35}
\end{equation*}
$$

The arithmetical means of the quantities in the columns headed x_{τ} and x_{μ} are +3.93 and $-\circ 64$. These are not the absolute errors of division of the lines τ and μ, but only with reference to the lines 2,3 and 6,7 .

The definite results, then, at which we have arrived are:

$$
\begin{align*}
& x_{i}=+3.69 \pm .063 \tag{36}\\
& x_{\tau}=+3.93 \pm .098 \\
& x_{3}=-0.25 \pm .063 \\
& x_{ \pm}=-0.84 \pm .064 \\
& x_{s}=+2.92 \pm .064 \\
& x_{\mu}=-0.64 \pm .061 \\
& x_{7}=+1.49 \pm .063 \\
& x_{8}=+1.53 \pm .063 \\
& x_{b}=+0.29 \pm .036 \\
& x_{\mathrm{c}}=+2.03 \pm .045 \\
& x_{i d}=+1.75 \pm .033 \\
& x_{c}=+1.43 \pm .045 \\
& x_{f}=+2.93 \pm .036 \\
& x_{a}=-0.87 \pm .037
\end{align*}
$$

And from these it remains to determine the absolute errors of the lines and the probable errors of such determinations. In the first place,

$$
\begin{align*}
& {[2 \cdot \tau]=\frac{6}{10}[2 \cdot 3]+x_{\tau}} \tag{37}\\
& {[6 \cdot \mu]=\frac{2}{10}[6 \cdot 7]+x_{\mu} .}
\end{align*}
$$

And by (3),

$$
\left.\begin{array}{rl}
{[2 \cdot 3]} & =\frac{\mathrm{I}}{10}+x_{3}-x_{2}+\frac{x_{b}}{10}+\frac{x_{g}}{60} \\
{[6 \cdot 7]} & =\frac{1}{10}+x_{7}-x_{0}+\frac{x_{b}}{10}+\frac{x_{g}}{60} \\
\therefore \quad[2 \cdot \tau] & =\frac{6 \mathrm{I}}{100}-\frac{6}{10} x_{a}+x_{\tau}+\frac{6}{10} x_{3}+\frac{6 x_{b}}{100}+\frac{x_{o}}{100} \\
{[6 \cdot \mu]} & =\frac{2 \mathrm{I}}{100}-\frac{2}{10} x_{0}+x_{\mu}+\frac{2}{10} x_{7}+\frac{2 x_{b}}{100}+\frac{x_{g}}{300} \\
\therefore \quad[a \cdot \tau] & =\frac{26 \mathrm{I}}{100}+\frac{4}{10} x_{2}+x_{\tau}+\frac{6}{10} x_{3}+\frac{26 x_{b}}{100}+\frac{26 x_{g}}{600} \tag{38}\\
{[a \cdot \mu]} & =\frac{62 \mathrm{I}}{100}+\frac{8}{10} x_{\theta}+x_{\mu}+\frac{2}{10} x_{7}+\frac{62 x_{b}}{100}+\frac{62 x_{g}}{600}
\end{array}\right\}
$$

With respect to the probable errors of the determination of errors of division of the lines $2,3,4,6,7,8$, it will be seen from (3) that each one depends on the probable errors of three other quantities independently determined; for instance, if \mathbf{E}_{n} be the probable error of the determination of x_{n} the probable error of $[a \cdot 2]$ is

$$
=\sqrt{\left(\mathrm{E}_{2}\right)^{2}+\left(\frac{2}{1 \sigma} \mathrm{E}_{l}\right)^{2}+\left(\frac{\sigma_{0}^{2} \sigma}{} \mathrm{E}_{o}\right)^{2}}
$$

but in the case of $[a \cdot \tau]$ and $[a \cdot \mu]$ there is a difference, for the former involves

$$
\frac{4 x_{3}+6 x_{3}}{10}
$$

but x_{2} and x_{3} are not independently determined. From equations (12) it appears that the weight of the determination of $\alpha x_{3}+\beta x_{3}$ is

$$
\frac{40}{27 \alpha^{2}+6 \alpha \beta+27 \beta^{2}}
$$

consequently the reciprocal of the weight of $\frac{4}{10} x_{i}+\frac{{ }^{6} 0}{10} x_{3}$ is

$$
\frac{1548}{4000}
$$

and the corresponding probable error

$$
\begin{equation*}
\pm \frac{.386}{5} \sqrt{\frac{1548}{4000}}= \pm \cdot 048 \tag{39}
\end{equation*}
$$

and $[a \cdot \mu]$ involves

$$
\frac{8}{10} x_{6}+\frac{2}{15} x_{7}
$$

By equations (12) the weight of the determination of $\alpha x_{\mathrm{w}}+\beta x_{7}$ is

$$
\frac{40}{28 \alpha^{2}+12 \times \beta+27 \beta^{2}}
$$

consequently the reciprocal of the weight of $\frac{8}{10} x_{0}+\frac{2}{10} x_{7}$ is

$$
\frac{2092}{4000}
$$

and the corresponding probable error

$$
\begin{equation*}
\pm \frac{.386}{5} \sqrt{\frac{2092}{4000}}= \pm \cdot 056 \tag{40}
\end{equation*}
$$

so that the probable errors of the determinations of $[a \cdot \tau]$ and $[a \cdot \mu]$ are respectively

$$
\begin{aligned}
& \sqrt{(.048)^{2}+\left(\mathbf{E}_{r}\right)^{2}+\left(\frac{26}{100} \mathbf{E}_{b}\right)^{2}+\left(\frac{26}{600} \mathbf{E}_{v}\right)^{2}} \\
& \sqrt{(.056)^{2}+\left(\mathrm{E}_{\mu}\right)^{2}+\left(\frac{62}{62} \mathrm{E}_{b}\right)^{2}+\left(\frac{62}{600} \mathbf{E}_{y}\right)^{2}}
\end{aligned}
$$

Proceeding in this manner, we get the following final results:

$$
\begin{align*}
& {[a \cdot 2]=+3 \cdot 7 \mathrm{I} \pm \cdot 063} \tag{41}\\
& {[a \cdot \tau]=\frac{26}{100} \mathrm{I}+5 \cdot 30 \pm \cdot 109} \\
& {[a \cdot 3]=\frac{3}{10} \mathrm{I}-0 \cdot 20 \pm \cdot 064} \\
& {[a \cdot 4]=\frac{4}{10} \mathrm{I}-0 \cdot 77 \pm \cdot 066} \\
& {[a \cdot 6]=\frac{6}{10} \mathrm{I}+3 \cdot 00 \pm \cdot 068} \\
& {[a \cdot \mu]=\frac{62}{100} \mathrm{I}+2 \cdot 08 \pm \cdot 086} \\
& {[a \cdot 7]=\frac{7}{10} \mathrm{I}+1 \cdot 58 \pm \cdot 063} \\
& {[a \cdot 8]=\frac{8}{10} \mathrm{I}+1 \cdot 65 \pm \cdot 070}
\end{align*}
$$

$$
\begin{aligned}
& {[a \cdot b]}
\end{aligned}=\mathrm{I}+0.14 \pm \cdot 0970
$$

8.

The absolute terms of equations (3) are the quantities given in Tables III., IV., and those in Table II. multiplied by $\sqrt{3}$ or rather $\sqrt{\frac{2}{1} \frac{3}{7}}$. Now each quantity in Tables III., IV., is of the form ; ($a_{1} \ldots a_{6} b_{1} \ldots . b_{4}$ representing single micrometer readings) -

$$
\frac{a_{1}+a_{2}+\ldots a_{5}}{6} h+\frac{b_{1}+b_{2}+\ldots b_{6}}{6} k
$$

and the probable error of a single reading of H or K is $\pm \cdot 31 \times 8= \pm 25$; consequently the probable error of any of the quantities in III. or IV., so far as mere errors of reading or observation are concerned, is

$$
\pm .25 \sqrt{\frac{12}{36}}= \pm \frac{.25}{\sqrt{3}}= \pm 0.11
$$

Each of the quantities in Table II. is of the form

$$
\frac{a_{1} \ldots \ldots a_{n}}{9} h+\frac{b_{1} \ldots \ldots b_{9}}{9} k
$$

and its probable error

$$
\pm 25 \sqrt{\frac{18}{81}}= \pm \frac{.25}{3} \sqrt{ } 2
$$

which when multiplied by \downarrow^{3} 3 becomes the same as the probable error of the quantities in Tables III., IV.

But we have seen (30) that the probable error of a single equation is ± 933, as determined by the solution of the equations. It appears, therefore, that the probable error of our results is nearly double what might be expected from errors of observation only. There are, therefore, other sources of error at work besides the mere defects of vision. What these may be it would be difficult to say, but one of them at any rate is known; personal error.

If any two observers bisect a given line under a microscope and the operation be repeated, microscope and object remaining steady, it may be found that in the long run there is a perceptible and systematic difference between their readings. This differeace will in general be a very small quantity, but sometimes it is not so small as not to be detrimental to the results. If the quantity were absolutely constant for all lines, the error would entirely disappear in every comparison, but it appears that the difference or personal error varies slightly with different lines. This, of course, will directly affect results. The observations contained in 'Tables I., II., III., IV., were made altogether by two observers, Captain Clarke, R.E., and Quartermaster J. Steel, R.E., who differ systematically in the bisection of a line by from I 5 to nearly 2 divisions. The greatest discrepancy resulting from personal error is to be found in the comparison of the two six-inch portions of $\mathbf{O F}$ or in the determination of the quantity x_{y}. The absolute terms of the equations (60 in number)
from which x_{g} results are the 60 quantities in Table I. The probable error of each of these quantities due to errors of reading only is $\pm \frac{23}{9} \quad \sqrt{2}= \pm 0 \cdot 118$, as we have seen above. But by the errors exhibited after the solution of the equations we have found for the probable error of an equation ± 0.287, which is more than double the error resulting from readings only. If in this series the errors pertaining to the two observers be arranged separately, it is found that the arithmetical mean of the errors of one observer is +0.14 from 32 observations, and that of the other is -0.16 from 28 observations: showing an effect of personal error between the two of 0.30 . This, however, is the largest difference that has been noticed. Personal error does not easily admit of being eliminated, unless there be a large number of observers engaged at the same work.

In equations (II) the absolute term is the difference of two quantities in Tables V., VI., it is, therefore, of the form

$$
\frac{a_{1}+a_{2}+a_{3}-a_{1}^{\prime}-a_{2}^{\prime}-a_{3}^{\prime}}{3} h+\frac{b_{1}+b_{2}+b_{3}-b_{1}^{\prime}-b_{2}^{\prime}-b_{3}^{\prime}}{3} k
$$

where $a_{1} b_{1} \ldots$ are single micrometer readings. The probable error of this expression is

$$
\pm \cdot 25 \sqrt{\frac{12}{9}}= \pm \frac{\cdot 50}{\sqrt{3}}= \pm \cdot 288
$$

But after the resolution of the equations we found (32) the probable error of a single equation ± 386. Here, again, we see that the error is larger than mere errors of observation will account for.

There is no other known source of error in this series of observations than errors of observation (readings or bisections) and personal error. Sudden changes of temperature there are none: the presence of the observer may raise the temperature of the bar perhaps 5 hundredths of a degree Fabrenheit during a visit, but this in such small lengths as are now under consideration will not be nearly sufficient to explain the residual errors.

9.

The portions of this scale which are referred to in the determinations of the length of the Toise and Metre are, for the Toise, that which lies between the line designated τ and that designated f, or $[\tau \cdot f]$; and for the Metre, that which lies between the lines μ and e, or $[\mu \cdot e]$. Now, from (2) and (38),

$$
\begin{align*}
& {[\tau \cdot f]=\frac{474}{100} \mathrm{I}-\frac{4}{10} x_{2}-x_{\tau}-\frac{6}{10} x_{3}-\frac{26}{100} x_{b}+x_{f}+\frac{474}{600} x_{g}} \tag{42}\\
& {[\mu \cdot e]=\frac{338}{100} \mathrm{I}-\frac{8}{10} x_{6}-x_{\mu}-\frac{2}{10} x_{7}-\frac{62}{100} x_{b}+x_{o}+\frac{398}{800} x_{g}} \tag{43}
\end{align*}
$$

each involving the determinations of six errors of divisions.
With respect to the probable errors of $[\tau \cdot f]$ and $[\mu \cdot e]$ we see that they are each the combination of four partial probable errors; viz.,

\[

\]

\[

\]

The probable error of the first quantity in each of these groups we have already considered. From equations (6) we see that the weight of the determination of $\alpha x_{b}+\beta x_{f}$ is

$$
\frac{18}{11 \alpha^{2}+2 \alpha \beta+11 \beta^{2}}
$$

If $\alpha=-\frac{26}{100} ; \beta=1$, this becomes

$$
\frac{180000}{112236}
$$

and consequently the probable error of the determination of $-\frac{26}{100} x_{b}+x_{f}$ is by (30)

$$
\begin{equation*}
\pm \frac{\cdot 233}{5} \sqrt{\frac{1122}{1800}}= \pm \cdot 037 \tag{4}
\end{equation*}
$$

Again, by equations (6) the weight of the determination of $\alpha x_{b}+\beta, x_{v}$ is

$$
\frac{18}{11 \alpha^{2}+4 \alpha \beta+17 \beta^{2}}
$$

Making $\alpha=-\frac{62}{100} ; \beta=1$, we have for the weight of the determination of $-\frac{62}{100} x_{b}+x_{d}$

$$
\frac{180000}{187484}
$$

Consequently the probable error is

$$
\begin{equation*}
\pm \frac{\cdot 233}{5} \sqrt{\frac{1875}{1800}}= \pm \cdot 013 \tag{45}
\end{equation*}
$$

Hence the absolute probable crrors of $[\tau \cdot f],[\mu \cdot e]$ are

$$
\begin{aligned}
& {[\tau \cdot f] \ldots . . \sqrt{(.048)^{2}+(.098)^{2}+(.037)^{2}+(.029)^{2}}} \\
& {[\mu \cdot e] \ldots . .0 \sqrt{(.056)^{2}+(.061)^{2}+(.048)^{2}+(.021)^{2}}}
\end{aligned}
$$

And finally,

$$
\begin{align*}
& {[\tau \cdot f]=\frac{474}{100} I-3 \cdot 10 \pm \cdot 110} \tag{46}\\
& {[\mu \cdot e]=\frac{338}{100} I-1 \cdot 24 \pm \cdot 098} \tag{47}
\end{align*}
$$

where $I=\frac{1}{12} O F ;$ and the small quantities are expressed in millionths of a yard.

10.

In the following Section, equation (7), it will be seen that the length F of the foot [a.p] expressed in terms of Standard Yard No. 55 is,

$$
\mathbf{F}=\frac{1}{3} \mathbf{Y}_{50}-0.36+0.0066(t-62)
$$

where \mathbf{Y}_{55} is the length of the Standard Yard No. 55 at any temperature t, OF being at the same. Thence we find,

$$
\frac{474}{1200} F=\frac{474}{3600} Y_{5 s}-0.14+.0026(t-62)
$$

with a probable error of $\pm{ }^{\circ} 043$ (corresponding to $t=62$, only) and

$$
\frac{33^{8}}{1200} \mathbf{F}=\frac{33^{8}}{3600} \mathbf{Y}_{65}-0 \cdot 10+.0019(t-62)
$$

with a probable error of $\pm{ }^{030}$ (corresponding to $t=62$, only).
Consequently,

$$
\begin{aligned}
& {[\tau \cdot f]=\frac{474}{3600} \mathbf{Y}_{s 5}-3 \cdot 24+\cdot 0026(t-62) \pm \cdot 127} \\
& {[\mu \cdot e]=\frac{338}{3600} \mathbf{Y}_{5 s}-1 \cdot 34+\cdot 0019(t-62) \pm \cdot 102}
\end{aligned}
$$

where the probable errors have reference to the lengths at 62°.
The total number of micrometer readings made for the determination of the errors of subdivisions of OF is $\mathbf{8 0 9 2}$.

COMPARISON OF TIIE IRON FOOT

OF wiril $Y_{5 s}$

In order to determine the true length of OF it was compared with Copy No. 55 of the Standard Yard.

The yard and foot were mounted close together in one box. The centres of the bars were opposite to one another, and their lengths parallel. Four microscopes were adjusted from the centre stone pier, having (1) their axes vertical, (2) their foci in one horizontal straight line, (3) the distances from centre to centre one foot exactly. The perfecting of all these adjustments takes a considerable amount of time and patience. First, the Standard Yard being made truly level on its rollers, the outer microscopes, H on the left, and K on the right, are levelled and adjusted to focus over the terminal lines of the yard. The yard is then removed, and a very fine silk thread is stretched tightly under the microscopes, being brought accurately to the focus of H and K , and made to pass through the intersection of the cross-hairs of those microscopes. The inner microscopes A and C are then by means of this silk thread brought into line, the intersection of their cross-hairs being made to bisect the thread: by this means very great accuracy may be attained. The distance of A from H, C from A, and K from C,-that is, the distance of the zeros or collimation centres,-is then made as nearly as possible one foot, by bringing $O \overline{\mathrm{~F}}$, carefully levelled, first under H and A , then under A and C , then under C and K . Thus A and C are brought to their proper distance with respect to one another and to H and K . The levelling of A and C is then attended to. These different adjustments do of necessity disturb one another, and have to be repeated cach several times; but by patience they may be made very perfect. The microscopes finally are left in such position that only small positive readings are required to be made in the observations of comparisou.

The microscopes H and A (on the left) have their micrometer heads to the left; C and K (on the right) have their micrometer heads to the right. The line of the microscopes is as uearly as practicable parallel to the linc of rails. The values of one division of the microscopes are-

H	A	C	K
0.7949	1.177	0.869	0.7980

The Standard Yard has two thermometers in its wells, and the Foot (OF) one only.
The bars are visited three times generally during the day; the method of observing being as follows: (a) The thermometers are first read; (b) the yard is adjusted under H and K , and these microscopes read three times ; (c) $\mathbf{O F}$ is adjusted under H and A , and these microscopes read, three readings; (d) $\mathbf{O F}$ is adjusted under A and C , and these microscopes read, three readings; (e) $\mathbf{O F}$ is adjusted under C and K , and these microscopes read, three readings ; (f) SY is again adjusted under H and K , and these microscopes read, three reudiugs; (g) the three thermometers are again read, which closes the operation.

The "adjustments" referred to in this place are effected ly the transverse and longitudinal motions of the two carriages, whereby the terminal lines of the bar are brought
into precisely their proper places in the fields of view of the microscopes. Vertical adjustment of the bars, if necessary (for focus), is effected ly the levelling keys. The box in which the bars lie remains closed during the whole operation, the lines and thermometers being observed through the apertures in the cover.

The whole of the readings specified above, taken in one visit, are made as rapidly as is consistent with perfect accuracy.

As a specimen page of the observation book, showing the readings taken in one visit, the following is subjoined:-

Date.	Bar.	Microscope Readings.		Therwometers.	
				OF	Y_{63}
Nov. 6 9 九.M.	\mathbf{Y}_{55}	$\begin{gathered} \mathrm{H} \\ 12 \cdot \mathrm{I} \\ 12 \cdot \mathrm{I} \\ 11.8 \end{gathered}$	K $5 \cdot 4$ $5 \cdot 7$ $5^{\circ} \mathrm{I}$	$55 \% 70$	$\begin{aligned} & 55.62 \\ & 55.62 \end{aligned}$
	OF	$\begin{gathered} \mathrm{H} \\ 12.2 \\ 12.4 \\ 11.8 \end{gathered}$	A $5^{\circ} \mathrm{O}$ 5 5 5 5		
	OF	$\begin{aligned} & \text { A } \\ & 4^{\cdot} 7 \\ & 5^{\prime} \cdot 3 \\ & 5^{\cdot 1} \end{aligned}$	C 8.8 8.7 8.9		
	OF	$\begin{aligned} & \mathrm{C} \\ & 9 \cdot \mathrm{I} \\ & 9 \cdot 5 \\ & 9 \cdot 4 \end{aligned}$	K 7.0 6.1 5.9		
	\mathbf{Y}_{53}	$\begin{gathered} \text { H } \\ 10.6 \\ 10.9 \\ 10.4 \end{gathered}$	K 5.6 5.9 50		$\begin{aligned} & 55 \cdot 67 \\ & 55 \cdot 67 \end{aligned}$

Let now $r_{1} r_{1}^{\prime}$ represent the mean of the first (three) readings of H and K on V_{80}, $r_{2} r_{2}^{\prime}$ the mean of the second readings at the close : $r \rho^{\prime}$ the mean reading of H and A , $\rho_{1} \rho_{2}^{\prime}$ of A and $\mathrm{C}, \rho_{2} r^{\prime}$ of C and K ; so that the above Table stands thus :-

$$
\begin{aligned}
& r_{1} r_{1}^{\prime} \\
& r \xi_{1}^{\prime} \\
& \xi_{1} \xi_{1}^{\prime} \\
& \xi_{2} \\
& \xi_{2} r^{\prime} \\
& r_{2} r_{2}^{\prime}
\end{aligned}
$$

Now in the diagram let SY be the yard and the three lines parallel to it the three positions taken up by OF. Let $\mathbf{H}, \mathrm{A}, \mathrm{C}, \mathrm{K}$, represent the positions of the zeros of the microscopes.

Then if \mathbf{Z} be the distance from H to $\mathrm{K}, \mathbf{Y}_{\mathrm{si}}$ the length of the yard, \mathbf{F} the length of the foot,

$$
\begin{aligned}
& \mathrm{Z}=\mathrm{H} i+\mathbf{Y}_{55}+i^{\prime} \mathrm{K} \\
& \mathbf{Z}=\mathrm{H} n+\alpha \alpha^{\prime}+3 \mathbf{F}+\beta \beta^{\prime}+n^{\prime} \mathrm{K}
\end{aligned}
$$

Now if $h_{1}, a_{1}, c_{1}, k_{1}$, be the absolute lengths of one division in the micrometers $\mathrm{H}, \mathrm{A}, \mathrm{C}, \mathrm{K}$,

$$
\begin{aligned}
\mathrm{H} i+i^{\prime} \mathrm{K} & =\frac{1}{2}\left(r_{1}+r_{\mathbf{g}}\right) h+\frac{1}{2}\left(r_{1}^{\prime}+r_{2}^{\prime}\right) k \\
\mathrm{H} n & =r h \\
\alpha \alpha^{\prime} & =\left(\rho_{1}-\xi_{1}^{\prime}\right) a \\
\beta \beta^{\prime} & =\left(\rho_{3}^{\prime}-\xi_{2}\right) c \\
n^{\prime} \mathrm{K} & =r^{\prime} k
\end{aligned}
$$

Consequently we have the equations-

$$
\begin{aligned}
& \mathrm{Z}=\mathbf{Y}_{\mathrm{as}}+\frac{1}{2}\left(r_{1}+r_{2}\right) h+\frac{1}{2}\left(r_{1}^{\prime}+r_{8}^{\prime}\right) k \\
& \mathbf{Z}=3 \mathbf{F}+r h+\left(\rho_{1}-\rho_{1}^{\prime}\right) a+\left(\xi_{2}^{\prime}-\rho_{2}\right) c+r^{\prime} k
\end{aligned}
$$

$-\mathbf{Y}_{\Delta 5}+3 \mathbf{F}=\left(\frac{r_{1}+r_{8}}{2}-r\right) h+\left(\rho_{1}^{\prime}-\rho_{1}\right) a+\left(\rho_{2}-\rho_{2}^{\prime}\right) c+\left(\frac{r_{1}^{\prime}+r_{8}}{2}-r^{\prime}\right) k$

In this shape the observations are brought together in the following Table, each line representing the result of one visit or one comparison. The number of comparisons is thirty, extending over twelve days. The total number of micrometer readings 900 .

Compahison of OF with the Standard Yard No. 55.

Each of the quantities in the column headed "Temperature" is the mean of six thermometer readings, corrected for the errors of the three thermometers employed. The fourth column gives the difference of length $\mathbf{F}-\frac{1}{3} \mathbf{Y}_{55}$ expressed in milliont/s of a yard.

In order to obtain the difference of length at 62° and at any other temperature, let $F-\frac{1}{3} \mathbf{Y}_{55}$ be expressed by

$$
\begin{equation*}
x+(t-62) y \tag{I}
\end{equation*}
$$

where x is the difference $\mathbf{F}-\frac{1}{3} \mathbf{Y}_{55}$ at 62°, and y the relative expansion of \mathbf{F} over $\frac{1}{3} \mathbf{Y}_{35}$ for each degree Fahrenheit. If we compare this expression with the thirty differences of length at thiirty different temperatures given in the Table, there result thirty equations for the determination of x and y. These equations, treated by the method of least squares, give

$$
\begin{array}{r}
30 x-{ }^{385 \cdot 16 y+1} \begin{array}{r}
13 \cdot 47
\end{array}=0 \tag{2}\\
-385^{61} x+7192 \cdot 15 y-187 \cdot 88=0
\end{array}
$$

If we write A and B for the absolute terms of these equations, and eliminate x and y, we get

$$
\begin{align*}
& x+0.107234 \mathrm{~A}+0.005749 \mathrm{~B}=0 \tag{3}\\
& y+0.005749 \mathrm{~A}+0.000447 \mathrm{~B}=0
\end{align*}
$$

Substituting the numerical values of A and B ,

$$
\begin{align*}
& x=-0.364 \tag{4}\\
& y=+0.0066
\end{align*}
$$

Now for the probable errors we recur to the following theorem :-If there be a series of equations

$$
\begin{aligned}
& a_{1} x+b_{1} y+n_{1}=0 \\
& a_{2} x+b_{2} y+n_{2}=0 \\
& a_{3} x+b_{3} y+n_{3}=0 \\
& \vdots \\
& \vdots \\
& a_{i} x+b_{i} y+n_{i}= \\
& \vdots
\end{aligned}
$$

from which x and y are to be obtained, then, by the method of least squares,

$$
\begin{align*}
& \circ=x+\frac{\left(b^{2}\right)}{\left(a^{2}\right)\left(b^{2}\right)-(a b)^{2}} \cdot(a n)-\frac{(a b)}{\left(a^{2}\right)\left(b^{2}\right)-(a b)^{2}} . \tag{bn}\\
& \circ=y-\frac{(a b)}{\left(a^{2}\right)\left(b^{2}\right)-(a b)^{2}} \cdot(a n)+\frac{\left(a^{2}\right)}{\left(a^{2}\right)\left(b^{2}\right)-(a b)^{2}} . \tag{bn}
\end{align*}
$$

Then the sum of the squares of the coefficients of the symbols $n_{1} n_{2} \ldots n_{i}$ in the development of $x+f y$ is,

$$
\begin{equation*}
\frac{\left(b^{2}\right)-2(a b) f+\left(a^{2}\right) f^{2}}{\left(a^{2}\right)\left(b^{2}\right)-(a b)^{2}} \tag{5}
\end{equation*}
$$

which is also the reciprocal of the weight of the determination of $x+f y$.
Returning to the case under consideration, we see from (3),
Reciprocal of weight of x....... $0 \cdot 10723$

$$
\begin{array}{lll}
" & " & y \quad \ldots \ldots .0 \cdot 000447 \\
" & " & x+f y \ldots \ldots 0107^{23}+\cdot 01150 f+\cdot 000447 f^{2} .
\end{array}
$$

By substituting the values of x and y in the 30 equations from which they are obtained, the errors are found, and the sum of their squares $=6.734$; hence the probable errors of x and y are,

$$
\begin{align*}
& \text { for } x \ldots \ldots \pm \cdot 674 \sqrt{\frac{6 \cdot 734}{30-2}} \sqrt{ } \cdot 1072 \tag{6}\\
& \text { for } y \ldots \ldots \pm \cdot 674 \sqrt{\frac{6 \cdot 734}{30-2}} \sqrt{\cdot 00045}= \pm 0 \cdot 0070
\end{align*}
$$

Finally, for the length of the foot $\mathbf{O F}$ we have,

$$
\begin{equation*}
\mathbf{F}=\frac{1}{3} \mathbf{Y}_{65}-0 \cdot 36+0 \cdot 0066(t-62) \tag{7}
\end{equation*}
$$

The probable errors of this determination for the temperature $62^{\circ}+f^{\circ}$ Fahrenheit being,

$$
\begin{equation*}
\left(\cdot 011715+001256 f+0000488 f^{2}\right)^{4} \tag{8}
\end{equation*}
$$

The mean increase of temperature during a visit to the bars in this series of com-parisons-that is, the mean value of the excess of the second readings of the thermometers above the first readings-is $0^{\circ} \circ 6$, being the effect of the presence of the olserver.

VI.

DETERMINATION OF THE ABSOLUTE EXPANSIONS

OF TWO BARS

Olland $\mathbf{O l}_{\mathbf{2}}$

We shall here record some carefully conducted experiments whereby the absolute expansions of two ten-feet iron bars $\mathbf{O} \mathbf{I}_{1}$ and $\mathbf{O I}_{2}$ were obtained.

The observations were made in November 1857, when the temperature of the external air varied from 40° to 50°. The bar was observed about 9 a.m., at the temperature of the Bar Room, having lain under the microscopes during the preceding night. The micrometer readings being taken and registered, the bar was removed to another room in which the temperature was about 100°. Here the bar was allowed to remain until it acquired a steady temperature, as ascertained by the readings of the thermometers in the bar. It was then carefully enveloped in blankets, and with all practicable expedition taken to the Bar Room aud adjusted under the microscopes. Observations were then taken at intervals of time, the microscopes being read simultaneously by two observers, and the thermometers by a third.

The following Table contains the observations on $\mathbf{O} \mathbf{I}_{1}$. The value of one division of the West micrometer $=0.7738$, and that of the East micrometer $=1 \cdot 1473$ (millionths of a yard) : -

Date.	Temperature, Fahrenheit	Microscope IReadings.		$\mathrm{Ol}_{1}-\mathrm{z}$	Date.	Temperature, Fahrenheit.	Mieroscope Readinge.		O1- $\mathrm{I}^{\text {- }}$
		West.	East.				West.	Fast.	
$\begin{aligned} & 1857 . \\ & \text { Nov. } 19 \end{aligned}$		d	d		1857. Nov. 25		d	d	
	$52 \cdot 9$	150	59	$44^{\circ} 4$		$45^{\circ} 6$	96	120	-63.4
	97°	1427	114	973.4		74°	914	149	$536 \cdot 3$
	94°	1399	147	913.9		710	862	166	$476 \cdot 6$
	91°	1362	168	861.2		68.0	817	186	$418 \cdot 8$
" 20	$49 \cdot 5$	70	92	-51.4	, 26	$44^{\circ} 0$	402	344	-83.6
	$100{ }^{\circ}$	1501	108	1037.6		118.0	1925	28	J 457.4
	97°	$14+6$	123	$977 \cdot 8$		$115{ }^{\circ}$	1864	47	1388.4
	94°	1399	135	9277		112.0	1804	71	1314.5

The 5th and 10th columns show the excess of the length of the bar above the distance of the zeros of the microscopes, obtained from the microscope readings in the preceding columns.

If we reduce each of these groups by the method of least squares we obtain the following results for the different days:-

Nov. 19th; Expansion for $1^{\circ}=21.096$

| $"$ 20th; | $"$ | $"=21.725$ |
| :--- | :--- | :--- | :--- |
| $"$ 25th; | $"$ | $"=21.269$ |
| $" 26$ th ; | $"$ | $"=20.713$ |

Reducing the whole by the method of least squares, and then summing the squares of the errors of the individual measures, we have,

$$
\text { Expansion of } \mathrm{Ol}_{1} \text { for } \mathrm{I}^{\circ} \text { Fahrenheit }=21 \cdot 055 \pm \cdot 089
$$

The observations on $\mathbf{O I}_{2}$ are given in the next Table :-

Date.	Temperature, Fahrenheit	Microscope Readings.		$\mathrm{OH}_{3}-2$	Date.	Tensperature, Fabrenueit	Microscope Readings.		$0 I_{2}-i$
		West.	Eatt.				West.	Eust.	
1857. Nov. 2	-	d	d		1857.	\bigcirc	d	d	
	51.5	232	251	-109.0	Nov. 13	$43^{\cdot 1}$	194	348	-249*1
	82.0	1150	284	563.6		$95^{.2}$	1620	350	852.0
	79.2	LOII	257	487.4		91.8	1489	317	$788 \cdot 5$
	73.5	83^{6}	260	$348 \cdot 7$		$88 \cdot 5$	1471	35^{6}	729.8
, 3	54'9	552	417	$-5^{1} 3$	" 14	$45^{\circ} 0$	192	312	-209.4
	$80 \cdot 2$	1234	395	501.7		97°	1572	269	$907 \cdot 8$
	$77 \cdot 6$	1152	3^{81}	$454{ }^{\prime} 3$		94°	1538	292	855. 1
	73.8	926	295	$378 \cdot 4$		91.0	$1+92$	314	$79+3$
, 4	55.6 8.6	631 1382	463	- 43.5	, 16	$45^{\circ} 3$	212 1522	304	$-18+7$ 810.6
	84.3 80.8	1382	447	$556 \cdot 6$		$93^{\circ} 0$	1522	320	810.6
	80.8 76.8	1239	408	490.6		$90^{\circ} \mathrm{O}$	1492	$3+9$	$75+1$
	$76 \cdot 8$	1142	413	409•8		870	1461	379	6957
, 12	47.5	207	280	-161.1	\% 18	51.4	244	346	-208.2
	85.9	1274	289	654.2		102.0	1604	$33^{\text {I }}$	861.4
	- 8 I 5	1176	294	$572 \cdot 7$		99°	1564	350	$808 \cdot 7$
	77°	1083	305	$488 \cdot 1$		$96 \cdot 0$	1523	369	755 ${ }^{\circ}$

The 5th and 10th columns show the excess of the length of the bar above the distance of the zeros of the microscopes, oltained from the microscope readings in the two preceding colums.

If from each group we obtain by the method of least squares the value of the expansion of the bar for 1°, we get the following values :-

November	2	21.595	21.316	November 13.
",	3	22.206	21.662	14.
"	4	21.16	20.983	16.
1	12	21'539	21.347	" 18.

If we reduce the whole of these observations in one mass, we have the following final result :-

Expansion of Ol_{2} for I° Fahrenheit $=21 \cdot 400 \pm{ }^{\circ} 0,0$

These determinations may be considered tolerably satisfactory. In two respects they are, however, not unexceptionable: lst, the bar when observed at the high temperatures was not in a state of quiescence and equilibrium, but in the state of cooling. Everything was done which the means then at disposal permitted, to retard the cooling, as wrapping in blankets, \&c., nevertheless the temperature of the bar was in a changing state, and it is assumed that the thermometer, as read at any instant, indicated the temperature of the metal at that instant; 2d, the interval of time between the first observation in the morning at low natural temperature and the observations at high temperature was from two to three hours. Was there any alteration in the distance of the microscopes in that time? This point can be satisfactorily answered, as the Ordnance Standard \mathbf{O}_{1} was in the Bar Room all the time, and was used to test the distance of the microscopes. It may be asserted that there were no changes in the distance of the zeros of the microscopes of sufficient magnitude to influence the results.

The expansions obtained above may be otherwise thus stated :-

These expansions differ but little from the expansions of the Ordnance Standard \mathbf{O}_{1} as shown in the "Account of the Measurement of the Lough Foyle Base." The absolute expansion of this bar, as determined by the experiments of the late Captain Drummond, R.E., in 1827 , was 21.740 per I° Fahrenheit : but the values resulting from four different series of comparisons in $1844,1845,1846$, gave $20.33,20.23,20.65,19.74$, of which the mean is 20.26. The expansion of \mathbf{O}_{1} as inferred from the comparisons made between it and the compensation bars during the measurement of the Salisbury Plain Base gave 21.23. This differs but one-hundredth part from the expansion of either $O I_{1}$ or $O I_{2}$ as determined in these experiments.

From the probable errors exhibited in the above Table it would appear that if the length of $\mathbf{O l}_{1}$ or $\mathbf{O l} \mathbf{I}_{2}$ were observed at 52° or 72°, their lengths at 62° might be inferred with a probable error of less than one millionth of a yard.

VII.
 DETERMINATION OF THE LENGTH OF THE ORDNANCE STANDARD O

1.

The determination of the length of this Standard in terms of the yard \mathbf{Y}_{55} is necessary in order to express the length of any of the sides in the Triangulation of Great Britain and Ircland, as published in the "Account of the Principal Triangulation," in terms of the National Standard of length. The determination involves the use of an intermediate bar, carrying points on its surface, for the standard \mathbf{O}_{1} has no subdivisions, the extreme dots being at the mid-depth or neutral axis of the bar. The bar used intermediately is designated $\mathbf{O I _ { 1 }}$ (Ordnance Intermediate, No. 1.), and has been already described as having seven points on its upper surface distributed thus:

and which we shall for convenience designate by the letters $\alpha a b c d \varepsilon \varepsilon$. The extreme spaces $[\alpha \cdot a],[e \cdot \varepsilon]$ are each one yard; the four central spaces are each one foot.

The comparisons made were the following:-

(1) The left yard $[\alpha \cdot a]$ was compared with the standard yard $\mathbf{Y}_{3 s}$ on May 1 gth, 2oth, 2 Ist, June 8 th, 25 th, 27 th ; in all twenty comparisons; each "comparison" being the result of one visit.
(2) The left centre yard $[a \cdot d]$ was compared with $\mathbf{Y}_{5 s}$ on February 22d, 23d, May $23 \mathrm{~d}, 25$ th, June 9th, 29 th ; twenty-one comparisons.
(3) The right centre yard [b•e] was compared with $\mathbf{Y}_{5 s}$ on February 23d, 24th, 25th, May 26th, 27 th, 28th, June 1oth, 1 7 th, 29th, 30 th; twenty-two comparisons.
(4) The right yard [$e \cdot \varepsilon$] was compared with $\mathbf{Y}_{t 5}$ on May joth, 3 Ist, June Ist, r8th, 30th, July ist, 2 d ; in all twenty comparisons.
(5) The left centre foot $[a \cdot b]$ was compared with $O F$ on June $2 d$ and $20 t h$, July $4^{\text {th }}$; ten comparisons.
(6) The right centre foot [d.e] was compared with OF on June 21 st, 22d, July 4th; ten comparisons.

With the exception of the comparisons of the two central yards in February, the remainder of the comparisons in May, June, and July were made at temperatures differing but little from the standard temperature of 62°. The comparisons in February were made at the temperature of about 3°, and serve to establish the difference of expansions of Ol_{1} and \mathbf{Y}_{bb}.
(7) The ten-feet space $[\alpha \cdot \epsilon]$ was compared with \mathbf{O}_{1} on February 18 th, 19th, 2oth, May 16th, 17th, 18th, June 4th, 6th, 7 th, 23d, 24th; in all forty comparisons. The comparisons in May and June were made at temperatures close to 62°, those in February at the temperature of 40°. By this arrangement the difference of the rates of expansion of $O \mathbf{I}_{1}$ and \mathbf{O}_{1} become well ascertained.

The total number of micrometer readings in these seven series of comparisons is 2708.

From September 1863 until March 1864 the number of micrometer readings taken at a single visit and considered as one comparison of two bars A, B, was 36 , disposed as follows :-

Bar.	Microscopes.	
	H	K
A	3 readings.	3 readings.
${ }_{8}^{\text {B }}$	3 ,	3 "
B	"	3 "
A	3 "	3 "
${ }_{\text {A }}^{\text {A }}$	3 "	3 "
B	3 "	3 "

The experience gained in that time served to show that the number of readings so taken was unnecessarily large, and that a smaller number of readings would be almost equally valuable, while there would be the advantage of less time occupied in a comparison, and less heat imparted to the bar by the lighted candles and the person of the observer. Consequently in comparisons made on this bar after the commencement of May 1864 the number of readings of micrometers in a single visit is as follows :-

Here one comparison involves 16 micrometer readings. Thesc, together with the eight thermometer readings, occupy about ten minutes.

No alteration has been made in the number of visits during the course of one day. In general four visits or comparisons are made at hours as far apart as practicable.

During the comparisons now under consideration, as in all others, the two bars being compared are placed side by side in the same box. The bar \mathbf{O}_{1} rests on rollers (as it has
always done) at one fourth und three fourthe of its length. Two thermometers are placed in each bar (excepting in the case of OF, which takes only one), and are read at the commencement and close of each visit. The box is kept closed during the whole operation, and it has been already explained that the thermometers are read through apertures in the lid of the box, having sliding covers; and the focal adjustment of the bars can also be effected without removing the cover of the box. This last remark, however, does not apply to the bar O_{1}. Its rollers, fixed in the bottom of the box and adjusted so that the bar shall be truly horizontal, are not provided with any elevating screw for ndjusting to focus; but at the commencement of a series of comparisons of \mathbf{O}_{1}, after it has been ascertained that this bar is truly level, the microscopes are adjusted to focus over its dots.

It has been often remarked by the observers that a bar once in focus under the microscopes will remain perfectly in focus for any length of time, -a remarkable proof of the perfect steadiness and rigidity of the whole apparatus. Also, if a box containing two bars whose upper surfaces are perfectly level be removed from the carriages and be replaced some months after, (the carriages standing on the same part of the iron rails as before), it has been invariably found that these bars are still perfectly level.

The extremities of the measure of ten feet on O_{1} are indicated, not by lines but by dots. Considering the number of years this standard has been in use the dots retain their circular shape well, jet not perfectly. They are also very large, and the diameter of either measures one hundred divisions of the micrometers H or K ; so that to observe the contre with the nicety one would desire is difficult. A large proportion of the probable error of our results will doubtless arise from this cause.

Nor are the lines on Ol_{1} very good; they are about 30 divisions of the micrometer in breadth; but the edges are straight and parallel, and this is of greater importance than the breadth.

The following Tables contain the observations in detail, each line corresponding to one visit.

LEFT YARD.

Date. 1864.	'Temp.	Ol_{1}	$\mathbf{Y}_{\text {b }}$	Difference of Leagth in Mierameter Divisions.	[a*i]- $\mathrm{Y}_{\text {ss }}$
May 19	${ }^{\circ}{ }_{4} \cdot 31$	$93.35 h+70.95 k$		$20.03 h+48.60 k$	+54\%
	6431	$85.93 h+78.25 k$	$114 \cdot 13 h+116.98 k$	$28 \cdot 20 h+38.73 h$	53.32
	64.13	${ }^{8} 3.38 h+83.55 k$	$126.15 h+10770 h$	$42 \cdot 77 h+24.15 h$	53.27
" "	$64 \cdot 23$	$88^{4} \cdot 63 h+83.20 k$	$116 \cdot 10 h+120.83 h$	$35 \cdot 47 h+37.63 h$	$55^{\circ}+$
" "	64.31	$87.53 h+79.08 k$	$111 \times 10 h+124 \cdot 25 k$	$23.57 h+4517 k$	54.78
	$64 \cdot 40$	$78.03 h+87.85 k$	$11928 h+114{ }^{2} 8 k$	$41 \cdot 25 h+26.93 k$	$5+28$
, 21	$64 \cdot 50$	$91.25 h+76.98 k$	$116.98 h+118.85 k$	$25.73 h+41.87 h$	$53 \cdot 87$
, "	64.53	$85.33 h+81 \cdot 85 h$	122.20h+114.50h	$36.97 h+32.65 k$	55%
June 8	62.92	$38 \cdot 68 h+35 \cdot 65 h$	$76 \cdot 10 h+67 \cdot 10 k$	$3742 h+3{ }^{1} 45^{k}$	$54 \cdot 84$
" "	$63^{\circ} 97$	$30 \cdot 48 h+42 \cdot 28 h$	$69.98 h+72.88 h$	$39.50 h+30 \cdot 60 k$	$55 \cdot 82$
" "	$63 \cdot 19$	$33.25 h+40.53 h$	$73 \cdot 25 h+68 \cdot 85 k$	$40^{\circ} 00 h+28 \cdot 32 k$	54.40 50.16
" "	63.32	$48.05 h+23.70 h$	${ }^{8} \cdot 133^{\prime}+59^{\cdot 13}{ }^{k}$	$35^{\circ} 08 h+35^{\circ}+3 k$	$56 \cdot 16$
	61.88	$24.00 h+27 \cdot 85 h$	$57.73 h+62.03 h$	$33 \cdot 73 k+3+18 k$	$5+09$
	${ }^{61} 197$	$30 \cdot 10 h+19.85 h$	$63 \cdot 45 h+55 \cdot 83 h$	$33^{*} 35 h+35^{\circ} 9^{8} k$	$55^{2} 2$
	62.02	$23.35 h+26 \cdot 18 k$	$65.88 h+55.40 h$	$42 \cdot 53 h+27 \cdot 22 k$	55.53
"	62.09	$26.98 h+21.50 h$	$68 \cdot 10 h+49.95 h$		55:39
27	$\mathrm{GI}_{6} 6$	${ }^{2} 5775 h+28.30 k$	$69.07 h+53.60 h$	$43.32 h+2530 k$	$54 \cdot 62$
,	61.67	$23 \cdot 40 h+3{ }^{1} 73 k$	$55.75 h+65.83 k$	$32 \cdot 35^{h}+34^{10} 10 k$	52.93
" "	${ }_{61}{ }^{\prime} 75$	$31 \cdot 80 h+19.98 h$	$63.88 h+56 \cdot 95 h$	$32.08 h+36.97 k$	$5.5{ }^{\circ} \mathrm{O}$
	62.02	$21.33 h+28.55 k$	$59 \cdot 28 h+60 \cdot 15 k$	$37.95 /{ }^{\prime}+3160 k$	$+55^{\circ} 3^{8}$

LEFT CENTRE YARD.

Date. 1864.	Temp.	OI,	Y_{05}	Difference of Length in Micrometer Divisions.	$[a \cdot d]-\mathrm{Y}_{s j}$
Feb. 22	$3^{8.61}$	$4779 h+40 \cdot 46 k$	$22.47 h+10.20 h$	$25 \cdot 32 h+30 \cdot 26 k$	-44.27
	$3^{8 \cdot 79}$	$43.11 h+45.59 h$	12.54 $h+20.66 k$	$30 \cdot 57 h+24.93 h$	44*19
	38.83	$45.77 h+41.66 k$	14'79 $k+16.91 k$	$30.98 h+24.75 h$	$44^{3} 8$
" 23	$38 \cdot 51$	$50.85 h+39.89 k$	$19.10 h+14.64 h$	$31^{1} 75^{k}+25^{2} \cdot 5^{k}$	45.39
, "	$38 \cdot+8$	$47 \cdot 68 h+42 \cdot 01 k$	$11.8 \mathrm{y} h+22.20 \mathrm{l}$	$35.87 h+19.81 k$	44.32
May 23	63.58	$10.85{ }^{6} k+90.73 k$	$70.50 h+69.25 h$	37.35 $h+2148 k$	$46 \cdot 83$
	63.67	$10795 h+89.23 h$	$72 \cdot 38 h+66 \cdot 43 h$	$35.57 h+22.80 h$	$46 \cdot 47$
	$63.7+$	$10293 h+100 \cdot 38 k$	$70 \cdot 15 h+74.23 h$	$32 \cdot 78 h+26.15 h$	$46 \cdot 92$
	$63^{\prime} 74$	$99.25 h+105.20 k$	$70.23 h+75.00 h$	$29.02 h+30 \cdot 20 h$	$47 \cdot 17$
25	62.04	$110.03 h+102.95 k$	$74.10 h+78.65 h$	$35.93 h+24.30 k$	47.95
" "	$62 \cdot 10$	$95.98 h+117.60 k$	$67.38 h+89.03 h$	$28.60 h+28.57 k$	45.53
"	$62 \cdot 11$	$100.95 h+111.80 k$	$68.80 h+84.40 h$ $72.68 h+80.58 h$	$32 \cdot 15 h+27.40 h$	$47^{\circ} 42$
"	$62 \cdot 15$	$102.60 h+109.70 h$	$72.68 h+80.58 h$	$29.92 h+29.12 k$	$47^{\circ} \mathrm{O} 2$
June 9	63.87	$52 \cdot 83 h+54 \cdot 73^{h}$	$26 \cdot 28 h+20 \cdot 55^{h}$	$26 \cdot 55 h+34 \cdot 18 h$	$48 \cdot 38$
	63.97	$60 \cdot 30 h+47.30 h$	$32 \cdot 20 h+17.98 k$	$28.10 h+29.32 h$	$45^{\prime} 73$
	64.05	$65.53 h+42.23 h$	$32.60 h+15 \cdot 83 h$	$32.93 h+26 \cdot 40 h$	47.24
" "	$64 \cdot 16$	$46.08 h+60.08 h$	$23.30 h+24^{13} / 3$	$22 \cdot 78 h+35^{\prime} 95 h$	46.80
29	$61 \cdot 26$	$69.75 h+57.90 h$	$35 \cdot 28 h+33 \cdot 88 h$	$3+47 h+24.02 h$	
	$61 \cdot 28$	$6 \mathrm{I} \cdot 80 h+62.88 \mathrm{~A}$	$33 \cdot 20 h+35 \cdot 25 h$	$28.60 h+27.63 h$	44.78
" "	$61 \cdot 30$	$63.05 h+63.53 h$	$32 \cdot 28 h+34.93 h$	$30.77 h+28.60 k$	47.28
" "	61.55	$70.93 h+56.28 h$	$34 \cdot 10 h+32 \cdot 87 h$	$3^{6.83} h+23^{\circ 1} h$	-47.96

RIGHT UENTRE YARD.

Date. 1864.	Temp.	$\mathbf{O l} \mathbf{1}_{1}$	\mathbf{Y}_{55}	Difference of Length in Micrometer Divisions.	$[b \cdot e]-\mathbf{Y}_{5 s}$
Fel. 23	$3^{8} 8 \cdot 67$	$23.20 h+23.19 h$	$14.79 h+1773 k$	$8.412+4.46 k$	-10.24
24	$38 \cdot 28$	$19.97 h+27.48 k$	$14.53 h+19.24 h$	$5 \cdot 44 h+8 \cdot 24 k$	10.90
	$38 \cdot 20$	$26 \cdot 31 h+22 \cdot 36 h$	$23.914+1174 k$	$2.40 h+10.62 h$	$10 \cdot 38$
" "	$38 \cdot 25$	${ }_{18.61} h+29.79 k$	$20.68 h+14.91 h$	$-2.07 h+14.88 k$	10.22
	$38 \cdot 27$	$28.20 h+19.20 k$	$18.83 h+1533 h$	$9.37 k+3.87 k$	10.54
	38.04	$21.49 k+2742 k$	$16.77 h+19.65 k$	$4.72 h+777 k$	9.95
May 26	$6 \mathrm{~L} \cdot 8_{4}$	$80.38 h+88.20 k$	$79.38 h+79.60 h$	$1.00 h+8.60 k$	7.66
	61.84	$88.70 h+80 \cdot 40 k$	$80.40 h+74.88 k$	$8 \cdot 30 h+55^{2} h$	11.00
, 27	60.89	$95^{\circ} 03 h+76.95 k$	$89.00 h+71.30 h$	$6.03 h+5.65 h$	9.30
" "	60.86	$83.68 h+90.58 k$	$73.95 h+89.33 h$	$9.73 h+1.25 k$	$8 \cdot 73$
	60.85	$87.08 h+86 \cdot 45 h$	$76.23 h+86 \cdot 00 k$	$10.85 h+0.45 k$	8.98
", 28	60.28	$84 \cdot 85 h+91 \cdot 3^{8} k$	$78 \cdot 73 h+84.78 k$	$6 \cdot 12 h+6 \cdot 60 h$	$10^{1} 13$
" "	$60 \cdot 31$	$74 \cdot 80 h+102.58 k$	$73.55 h+92.63 k$	$1.25 h+9.95 k$	8.93
" "	60.31	$89.05 h+87.55 h$	$89.63 k+74.58 k$	$-0.58 k+12.97 k$	9.89
June 10	64.22	$33.33 h+30 \cdot 85 h$	$23.80 h+25.93 h$	$9.53 h+4.92 h$	11.50
, 17	61.55	$52 \cdot 73 h+52 \cdot 85 k$	$45.38 h+46 \cdot 00 k$	$7.35 h+6.85 h$	11.31
" "	61.50	$54.90 h+52.08 h$	$52.53 h+4{ }^{\circ} 48 k$	$2.37 h+10.60 k$	10.34
" "	$61 \% 9$	$69.98 h+37.55 k$	$53.53 h+39.70 h$	$16.45 h-2.15 k$	11.36
	61.79	$81.05 h+88.35 h$	$83.48 h+70.50 h$	$-2.43 h+17.85 h$	12.31
30	$61 \cdot 32$	$79.60 h+90.85 k$	$77^{\circ} 43 h+81.78 h$	$2 \cdot 17 h+907 h$	$8 \cdot 96$
	61.36	$81.53 h+88.45 k$	$75.13 h+82 \cdot 05 h$	$6.40 h+6.40 k$	10.19
" "	61\%4	$78 \cdot 83 k+91.78 k$	$76.05 h+82 \cdot 18 k$	$2 \cdot 78 h+9 \cdot 60 h$	- 9.87

COMPARISONS of \mathbf{O}_{1} and Ol_{1}.

Date. 1864.	Тешр.	\mathbf{O}_{1}	OH_{1}	Difference of Lengh in Micrometer Divisiona.	$\mathrm{O}_{1}-\mathrm{OI}_{1}$
Feb. 18	$40 \cdot 70$	$45^{\circ} 46 h+45.34 k$	$31.33 h+34.09 h$	$14^{113} k+11.25 k$	-20.21
	$40 \cdot 67$	$35^{\circ} 73 h+5{ }^{\circ} 02 k$	$3340 h+34.26 k$	$2 \cdot 33 h+17.76 k$	16.02
" "	$40 \cdot 74$	$34 \cdot 52 h+53.20 h$	$24.21 h+4349 h$	$10.31 / 2+9.71 k$	15.94
" ${ }^{\prime \prime}$	$40 \cdot 92$	$42 \cdot 39 h+43.58 h$	$28.53 h+34.53 k$	$13.86 k+9.05 k$	18-24
", 19	40.95	$35058 \mathrm{c}+48.66 h$	$28.86 h+30.37 k$	$6.72 h+18.29 k$ $3.00 h+17.26 k$	19.94
" "	$40 \cdot 95$	$30.99 h+46.37 h$	$27.99 k+29.11 k$	$3.00 h+17.26 k$	$16 \cdot 16$
" "	40.91	$32.62 h+46.81 h$	$28.27 h+30 \cdot 88 h$	$4.35 h+15.93 k$	$16 \cdot 17$
" ${ }^{\prime \prime}$	40.82	$33.75 h+4.02 k$	$31.49+25.99 k$	$2.26 h+18.03 k$	$16 \cdot 18$
", 20	$40 \cdot 33$	$33 \cdot 36+53.21 k$	$28.50 h+36.97 k$	$4 \cdot 86 h+16 \cdot 24 h$	16.82
	$40 \cdot 30$		$25^{\circ} \mathrm{I} 8 \mathrm{~h}$ + $37.27 h$	$6.79 h+1536 k$	17.65
May 16	62.40	$99.48 h+99.78 h$	$90.41 h+85.69 k$	$9.07 h+14.09 h$	18.45
	62.50	$102.61 h+96.09 k$	$88 \cdot 24 h+84.53 k$	$14.37 h+11 \cdot 56 k$	20.65
	62.58	$83.16 h+89.96 k$	$99.68 k+100 \cdot 11 / 2$	$16.52 h+10.15 h$	21.23
" 17	62.64	$102.48 h+96.50 h$	$81.88 h+92.58 k$	$20.60 h+3.92 k$	19.50
	62.64	$70.33 h+128.80 k$	$65 \cdot 38 h+106 \cdot 85 h$	+995h+21.95 ${ }^{\prime}$	214.5
	62.71	$90.53 h+107.93 k$	$60.58 h+112.98 k$	$29.95 h-5.05 h$	19.79
	$62 \cdot 78$	$100 \cdot 60 h+99.93 h$	$79.53 h+94.58 h$	$2 \mathrm{I} 07 h+5.35 h$	21.02
	62.88	$102 \cdot 65 h+96.53 h$	$91.68 h+82.55 k$	$10.97 h+13.98 k$	19.88
, 18	63.04	$10273 h+9+70 k$	${ }_{7}^{8.48 h}+92.55 k$	$2{ }^{2} 25^{\prime} h+2.15 k$	20.99
" "	63.13	$91^{\circ} 03 h+100.05 h$	$78.63 h+90 \cdot 80 k$	$12.40 h+9.25 k$	17.24
" " "	63.18 63.26	$89.10 h+105.23 h$ $95^{8} 5 h+99^{\circ} 05 h$	$85.93 h+85.58 h$ $8.20 h+85.95 k$	$3.17 h+19.65 k$ $11.65 h+13.10 k$	18.20
" "	63.2	$95^{\prime} 8{ }^{\prime} h+99.05 k$	$8{ }^{\circ} 20 h+85.95 k$	$11.65 h+13.10 k$	19.71
June 4	$58 \cdot 35$	$4 \cdot 40 h+32 \cdot 70 h$	$1 \cdot 23 h+7 \cdot 75 h$	$3 \cdot 17 h+24.95 k$	22.43
" ,	$58 \cdot 42$	$14.65 h+15.60 h$	$6.08 h+0.43 k$	$8.57 h+15 \cdot 17 k$	18.92
" "	$58 \cdot 50$	$20 \cdot 23 h+14.40 k$	$2.80 h+4.60 k$	$17.43 h+9.80 h$	21.68
	58.73	${ }^{15} 188 h+14.45 h$	$1.80 h+3.33 k$	$13 \cdot 38$ + I1.12k	19.51
"	$60 \cdot 25$	-1.43h+1.65h	- $9.95 h-13.50 k$	$8.52 h+15^{1.15} k$	18.86
" "	$60 \cdot 42$	- $6.15 h-1.25 k$	-13.35 h -- 14.03 k	$7 \cdot 20 h+12.78 k$	15.92
" "	60.59	- $5.98 h-1.23 k$	$-16.23 h-13.00 k$	$10 \cdot 25 k+11.77 k$	17.54
	60.84	- $2.38 h-6.73 k$	-14.53h-1500k	$12.15 h+8.27 k$	16.26
7	61.74	- $15.03 h-1503 k$	$-12.70 h-35.25 h$	$-2.33 h+24.22 k$	17.48
	61.93	$78.08 h+92 \cdot 15 k$	$64.85 h+83.65 h$	$13.23 h+8.50 k$	17.30
"	62.06	$77.95 k+89.83 k$	$69.50 h+77.75 k$	$8 \cdot 45 k+12.08 k$	16.36
23	62.37	$52.03 h+61.73 h$	$43.70 h+49.55 h$	$8.33 h+12.18 k$	$16 \cdot 34$
" "	62.38	$51.73 h+58.40 h$	$38 \cdot 35 h+53.98 h$	${ }^{1} 3.38 h+4.42 h$	14.16
,, ,"	62.39	$44.08 h+69.33 k$	$43 \cdot 28 h+49 \cdot 18 h$	$0 \cdot 80 h+20^{1} 55^{h}$	16.72
"	62.5	$47.35 h+64.60 k$	$45^{\circ} 95 h+45.68 h$	$140 h+18.92 h$	$16 \cdot 21$
	62.56	$53.98 h+57.45 h$	$47.05 h+44.43 k$	$6.93 h+13.02 k$	15.90
, 24	$62 \cdot 22$	$59 \cdot 75 k+57.70 k$	$48 \cdot 55 h+48.25^{k}$	$11.20 h+945 k$	16.44
" ,	62.21	$58 \cdot 00 h+56 \cdot 78 k$	$54.05 h+40.63 k$	$3.95{ }^{h}+16.15 k$	-16.03

The second column in these Tables gives the mean of the eight thermometer readings at each visit, corrected for the errors of the thermometers. The third and fourth columns give the mean micrometer readings on the two bars; h and k represent the values of a division of the micrometer microscopes H and K respectively. It should also be remembered, in order perfectly to understand the result, that (as is invariably the practice) the micrometer heads are outwards, and the direction of positive measurement is towards the centre of the bar; the distance apart of the zeros of micrometers being in general greater than the length of either bar, in order that positive readings may be obtained. A departure from this rule will be observed in the comparisons of \mathbf{O}_{1} and $\mathbf{O I}_{1}$ on June 6th; this is the result of the change of temperature which took place between the 4 th and 6 th, whereby
the length of the bars was made to exceed the distance of the zerus of the microscopen. The values of h and k expressed in millionths of the yard are,

$$
\begin{aligned}
h & =0.79494 \\
k & =0.79800
\end{aligned}
$$

The last column contains the resulting difference of length expressed in millionths of a yard.

2.

In determining from the four series of comparisons on [$a \cdot e$] and its parts the length of that space in terms of \mathbf{Y}_{50} and the relative expansion of the two metals, we must form equations of condition, and solve them by the method of least squares. Let u be the excess of the expansion of one yurd of $\mathbf{O I}_{1}$ above a yard of \mathbf{Y}_{s} for one degree Fabrenheit, and let

$$
\begin{align*}
& {[a \cdot b]=\frac{1}{3} \mathbf{Y}_{55}+x+\frac{1}{3} u(t-62)} \tag{1}\\
& {[a \cdot d]=\mathbf{Y}_{\Delta s}+y+u\left(t-6_{2}\right)} \\
& {[a \cdot e]=\frac{4}{3} \mathrm{Y}_{\mathrm{ss}}+z+\frac{4}{3} u(t-62)} \\
& \text { Also let } \quad F=\frac{1}{3} Y_{\Delta s}+\lambda+\mu(t-62) \\
& \text { Then } \quad[a \cdot b]=\mathbf{F}+x-\lambda+\left(\frac{1}{\mathrm{~s}} u-\mu\right)(t-62) \\
& {[a \cdot d]=\mathbf{Y}_{\mathrm{w}}+y \quad+u(t-62)} \\
& {[b \cdot e]=\mathrm{Y}_{\mathrm{sb}}+z-x+u(t-62)} \\
& {[d \cdot e]=\mathbf{F}+z-y-\lambda+\left(\frac{1}{3} u-\mu\right)(t-62)}
\end{align*}
$$

The values we obtained for λ and μ were-

$$
\lambda=-0.36 ; \mu=0.0066
$$

There will be 63 equations, as follows :-

	y	$+\quad 0.15 u+$ $+\quad 1.87 u+$	$\begin{aligned} & 47 \cdot 02= \\ & 48 \cdot 3^{8}= \end{aligned}$
	y	+ I.97u+	$45 \cdot 73$
	y	+ $2.05 u+$	$47 \cdot 23=$
	y	+ $2 \cdot 16 u+$	$46 \cdot 80=$
	,	$0 \cdot 74 u+$	$46 \cdot 57=0$
	y	$0.72 u+$	$44 \cdot 78=$
	y	$0 \cdot 70 u+$	$47 \cdot 28$
	y	$0.45 u+$	$47 \cdot 96$
	$+z$	$23.334+$	$10.24=$
\boldsymbol{x}	+ z	- 23.72u+	$10 \cdot 90=$
- \boldsymbol{x}	+ z	- 23.802	. $3^{8}=$
x	+ z	- $23.75 u+$	0. 22
$-x$	$+z$	- $23.73 u$	$10 \cdot 54=$
x	+ z	- $23.96 u+$	$9.95=$
x	+z	-.16u+	$7.66=$
x	+z	$0.16 u+$	II.00 =
x	+z	I.II $u+$	$9 \cdot 30$
x	+z	1.14u+	$8 \cdot 73=$
x	+z	$1 \cdot 15 u+$	$8 \cdot 98=$
x	+z	$1 \cdot 72 u+$	$10.13=0$
- x	+	1.69u+	$8 \cdot 93=$
- x	+ z	- 1.69u+	$9.89=0$
- x	+	+ 2.22u+	11.50 $=0$
x	+	$0.45 u+$	11.31 =
- x	+	$0.50 u+$	$10 \cdot 34=$
- \boldsymbol{x}	+ z	0.51 $u+$	II $\cdot 36=0$
$-x$	+ z	$0.214+$	$12 \cdot 31=0$
x	+	$0.68 u+$	$8 \cdot 96=0$
x	+z	$0.64 u+$	$10 \cdot 19=0$
x	+ z	$0.56 u+$	$9.87=$
- y	+ z	$0.01 u$	$23.05=$
y	+ z	0.014	$22.27=0$
y	+ z	$+0.03 u$	$23.06=0$
	+z	$+0.06 u$	$23.03=0$
y	+ z	$+0.09 u$	$23.82=0$
y	+ z	$+0.12 u$	$23.95=0$
y	+z	$+0.14 u$	$24 \cdot 35=0$
y	+ z	+ 0.16u	$22 \cdot 62=0$
y	+ z	0.304	$22 \cdot 30=$
		$0 \cdot 2$	$22 \cdot 74$

Forming the four final equations according to the method of least squares, we find-

$$
\begin{align*}
& +32.00 x-22.00 z+145.82 u-92.25=0 \tag{2}\\
& +31.00 y-10.00 z-104.27 u+1203.79=0 \\
& -22.00 x-10.00 y+32.00 z-152.38 u-8.50=0 \\
& +145.82 x-104.27 y-152.38 z+6159.735 u-6265.945=0
\end{align*}
$$

If we write ABCD for the absolute terms of these four equations, and then eliminate $x y z u$, there results -

$$
\begin{align*}
& x+.06589108 \mathrm{~A}+.01597077 \mathrm{~B}+.05004595 \mathrm{C}-.00005146 \mathrm{D}=0 \tag{3}\\
& y+.01597077 \mathrm{~A}+.04619088 \mathrm{~B}+.03098788 \mathrm{C}+.00117041 \mathrm{D}=0 \\
& z+.05004595 \mathrm{~A}+.03098788 \mathrm{~B}+.08183691 \mathrm{C}+.00136430 \mathrm{D}=0 \\
& u-.00005146 \mathrm{~A}+.00117041 \mathrm{~B}+.00136430 \mathrm{C}+.00021712 \mathrm{D}=0
\end{align*}
$$

The actual values of $x y z u$ and the reciprocals of the weights of the determinations are consequently

$$
\begin{array}{cc}
x=-13.044 & \text { Reciprocal of weight }= \\
y=-46.534 & " 0659108 \\
z=-23.442 & " \\
u=-0.0416 & "
\end{array}
$$

If now we substitute in the equations of condition these values of $x y z$ and u we get the errors of the individual comparisons, which we shall put together in the following Table in the order of dates.

The only point that calls for remark in the system of errors here shown is the difference of sign of the errors in February on the two centre yards, as though the rate of expansion that suited the one did not suit the other. As the two yards overlap and have two feet of length in common, it is difficult to conceive any cause for this discrepancy.

The sum of the squares of the sixty-three errors is 57.7166 . Therefore the probable error of a single comparison is-

$$
\begin{equation*}
\pm 0.674 \sqrt{\frac{57 \cdot 7166}{63-4}}= \pm 0.667 \tag{4}
\end{equation*}
$$

Making use of the weights we have obtained for z and u, we get for the

$$
\begin{equation*}
\text { Probable error of } z= \pm 0.667 \sqrt{.08184}= \pm 0.191 \tag{5}
\end{equation*}
$$

For the space $[a \cdot e]$ we have then the length-

$$
\begin{equation*}
[a \cdot e]=\frac{4}{3} \mathbf{Y}_{b 5}-23.44-0.0555(t-62) \tag{6}
\end{equation*}
$$

when the coefficient of $(t-62)$ is $\frac{4}{3} u$.
But we have yet to consider the probable error to which this result is subject in consideration of the probable error of the foot $\mathbf{O F}$ with which the spaces [a.b] and [d.e] were compared.

In the first place it is to be noted that these comparisons were made very close to the normal temperature of 62°, consequently any slight uncertainty in the difference of expansion of $\mathbf{O F}$ and \mathbf{Y}_{55} (which has been well determined) will not affect our results. But if in our equations of condition we had taken as the length of \mathbf{F} at $62^{\circ}, \frac{1}{3} \mathbf{Y}_{55}-0.36+n$, and if we had retained this symbol to the end of the calculation, we should have obtained, as is easily verified-

$$
\begin{aligned}
& x=-13.044+n \\
& y=-46.534 \\
& z=-23.442+n \\
& u=-0.0416
\end{aligned}
$$

On substituting these values in our equations of condition we should obtain the same syatem of errors as we have already exhibited, and hence to take fully into account the uncertainty in the value of \mathbf{F} in our resulting value of z we must add to the square of the probable error of z the square of the probable error of the assumed length of OF at 62°. This last probable error is (see page 77) $\pm 0 \cdot 108$. Therefore the probable error of $[a \cdot e]$ at 62° is-

$$
\sqrt{(\cdot 191)^{2}+\overline{(\cdot 108)^{2}}= \pm 0 \cdot 210, ~}
$$

and consequently at the temperature of 62°

$$
\begin{equation*}
[a \cdot e]=\frac{4}{3} \mathbf{Y}_{65}-23.44 \pm 0.219 \tag{7}
\end{equation*}
$$

3.

We have defined u to be the excess of the expansion of one yard of OI_{1} above that of \mathbf{Y}_{s5} for one degree Fahrenheit. The value of u being negative we have this result,-that the expansion of the yard \mathbf{Y}_{55} exceeds the expansion of three feet of Ol_{1} by 0.0416 $\pm{ }^{\circ} 0098$ for I° Fahrenheit.

Now by direct experiments the following result has been found for $\mathbf{O} \mathbf{l}_{1}$ (see page 79) :
Expansion for 1° Fahrenheit $=21.055 \pm .080 ;$
therefore the expansion of three feet of this bar is

$$
6 \cdot 3165 \pm \cdot 0267
$$

If from this we inferred the expansion of \mathbf{Y}_{35} we should find-
Expansion of $\mathbf{Y}_{\text {б下 }}=6.35^{8} \pm{ }^{\circ} 0284$.

4.

We have seen that the excess of the expansion of one yard of $\mathbf{O I} \mathbf{I}_{1}$ above that of \mathbf{Y}_{ω} for one degree Fahrenheit is

$$
-0.0416
$$

If by means of this we reduce the comparisons of the right and left yards of $\mathbf{O I}$, to the temperature of 62°, we get the following values:-

		Rigit Yaid at $z_{2}{ }^{\circ}$.	
Value.	Errors,	Value.	Errors.
$\mathbf{V}_{\text {b5 }}+54$ \% ${ }^{\text {c }}$	+0.05	$\mathbf{Y}_{\text {S5 }}-9^{\prime} 98$	+0.25
$53 \cdot 42$	-1.33	9.82	$+0.11$
533.36	1.39 + +08	9.97 1 1.56	+0.26
${ }_{5}^{51.13}$	+0.38	11.56	$-1 \cdot 33$
54.88	$+0.13$	8.6	+1.59
5438	-0.37	$9 \cdot 96$	+0.87
53.97	-0.78	$9 \cdot 68$	+0.55
55.55 54.88	+0.80	$9^{9} 27$	+0.96
54.86	+0.13 +1.11	10.13 8.39 8	+0.10
54.45	-0.30	$9 \cdot{ }^{8}$	+0.75
$56 \cdot 21$	$+1 \cdot 46$	$9^{\text {P1 }} 8$	+1.05
54.09	-0.66	1154	$-1 \cdot 31$
$55^{\circ} 2.2$	+0.47	$10 \cdot 34$	-0.11
55.53	$+0 \cdot 78$	11.45	-1.22
55:39	+0.64	11.00	-0.77
54.61	-0.14	11.08	-0.85
52.92	-1.83	10.42	-0.19
	+0.24 +0.63		-1.40 -1.52

Taking the means of the first and third columus, we get

$$
\begin{align*}
& {[\alpha \cdot a]=\mathbf{Y}_{b 5}+54.75 \text { at } 62^{\circ} \text { Fahrenheit. }} \tag{9}\\
& {[e \cdot \varepsilon]=\mathbf{Y}_{b 5}-10.23 \quad ",}
\end{align*}
$$

The sum of the squares of the errors in the left yard is 14.218 , hence the probable error of a single comparison is

$$
\begin{equation*}
\pm \cdot 674 \sqrt{\frac{14 \cdot 218}{20-1}}= \pm \cdot 583 \tag{10}
\end{equation*}
$$

and the probable error of the mean of the twenty comparisons

$$
\begin{equation*}
\pm \frac{\cdot 583}{\sqrt{20}}= \pm 0 \cdot 130 \tag{II}
\end{equation*}
$$

The sum of the squares of the errors of comparisons in the right yard is 20.475 , hence the probable error of a single comparison is

$$
\begin{equation*}
\pm 674 \sqrt{\frac{20 \cdot 475}{20-1}}= \pm 0 \cdot 700 \tag{12}
\end{equation*}
$$

and the probable error of the mean of the twenty comparisons

$$
\begin{equation*}
\pm \frac{0 \cdot 700}{\sqrt{20}}= \pm 0 \cdot 156 \tag{I3}
\end{equation*}
$$

5.

It remains now to bring together the results at which we have arrived, in order to ascertain the whole length $[\alpha \cdot \varepsilon]$ of $\mathbf{O I} \mathbf{I}_{1}$ in terms of \mathbf{Y}_{55} at 62°.

We have found

$$
\begin{aligned}
& {[\alpha \cdot a]=\mathbf{Y}_{65}+54.75 \pm 0.130} \\
& {[a \cdot e]=\frac{4}{3} \mathbf{Y}_{65}-23.44 \pm 0.219} \\
& {[e \cdot \varepsilon]=\mathbf{Y}_{55}-10.23 \pm 0.150}
\end{aligned}
$$

and adding these together, we have finally

$$
\begin{equation*}
\mathbf{O} \mathbf{I}_{1}={ }_{10}^{10} \mathbf{Y}_{56}+21 \cdot 08 \pm 0 \cdot 209 . \tag{I4}
\end{equation*}
$$

6.

For the difference of length of Ol_{1} and \mathbf{O}_{1} at 62° Fahrenheit and the difference of their expansions we have ten comparisons at 40° and thirty comparisons near 62°. Let y be the excess of expansion of \mathbf{O}_{1} above $\mathbf{O} \mathbf{I}_{1}$ for one degree of Fahrenheit, and let x be the excess of the length of \mathbf{O}_{1} above $\mathbf{O I _ { 1 }}$ at 62°; then in general

$$
\mathbf{O}_{1}=\mathbf{O} \mathbf{I}_{1}+x+y(t-6 \mathbf{2}) .
$$

The equations resulting from the forty comparisons are as follows:-

$$
\begin{aligned}
& x-21.30 y+20.21=0 \\
& x-21.33 y+16.02=0 \\
& x-21.26 y+15.94=0 \\
& x+1 \cdot 18 y+18 \cdot 20=0 \\
& x-21.08 y+18 \cdot 24=0 \\
& x-21.05 y+19.94=0 \\
& x-21.05 y+16.16=0 \\
& x-2109 y+16.17=0 \\
& x-21.18 y+16.18=0 \\
& x-21.67 y+16.82=0 \\
& x-21 \cdot 70 y+17 \cdot 65=0 \\
& x+0.40 y+18.45=0 \\
& x+0.50 y+20.65=0 \\
& x+0.58 y+21.23=0 \\
& x+0.64 y+19.50=0 \\
& x+0.64 y+21.45=0 \\
& x+0.71 y+1979=0 \\
& x+0.78 y+21.02=0 \\
& x+0.88 y+19.88=0 \\
& x+1.04 y+20.99=0 \\
& x+1.13 y+17 \cdot 24=0
\end{aligned}
$$

From these we obtain

$$
\begin{array}{r}
40 x-220 \cdot 51 y+725 \cdot 50=0 \tag{15}\\
-220.51 x+4593 \cdot 01 y-3848 \cdot 76=0
\end{array}
$$

Putting A B for the absolute terms of these equations,

$$
\begin{align*}
& \circ=x+\cdot 0339982 \mathrm{~A}+\cdot 0016322 \mathrm{~B} \tag{16}\\
& 0=y+\cdot 0016322 \mathrm{~A}+\cdot 0002961 \mathrm{~B}
\end{align*}
$$

The actual values of x and y are--

$$
\begin{align*}
& x=-18.384 \tag{17}\\
& y=-\quad 0.0446,
\end{align*}
$$

and consequently the length of \mathbf{O}_{1} is expressed in terms of $\mathbf{O} \mathbf{I}_{1}$ by the formula-

$$
\begin{equation*}
\mathbf{O}_{1}=\mathbf{O} I_{1}-18.384-0.0446(t-62) . \tag{18}
\end{equation*}
$$

If we substitute the above values of x and y in the equations we obtain the following system of errors:-

There are here two large errors of equal magnitude and opposite, viz., $++^{21}$ ou June 4th and -4.24 June 23d. There is nothing in the observations to throw any doubt whatever on these determinations. If we compare them with adjacent ones they assume the appearance of accidental errors.

Upon the whole the errors have not entirely the appearance of accidental errors. On some days there is a preponderance of positive errors, and on others a preponderance of negative errors. This is not any effect of personal error, as two different observers and sometimes three have made the comparisons on each day. It is to be remembered that one observer only is employed in a single comparison.

Another possible cause which preseuts itself is that one bar might be at a slightly different temperature from the other; but this is not borne out by an examination of the readings of the thermometer in the two bars. Take, for instance, the observations on May 17 th and June 23 d. It will be remenbered that each bar carries two thermometers: those in \mathbf{O}_{1} were marked Simms, No. 1 and No. 2, those in $\mathbf{O l}_{1}$ were Casella, 3461 and 3462. The error of the mean of 1 and 2 about 62° is $+0^{\circ} \circ 7$, and the crror of the mean of 346 I and 3462 at the same temperature is $+0^{\circ} \cdot 19$.

The temperatures of the bars on the days in question are :-

Hour.	Tenperature May 17.		Temperature June 23.	
	Ol_{1}	O_{1}	Ol_{1}	0,
9 А....	$6{ }^{\circ} \mathrm{P} \cdot 80$	${ }^{\circ}{ }^{\circ} \cdot 74$	$6{ }^{\circ} \cdot 53$	$6{ }^{\circ} \cdot 46$
12%	62.80	62.74	$62 \cdot 55$	62.48
2 Р.м.	$62 \cdot 87$	62.81	62.56	62.49
	62.95	${ }^{62} \cdot 87$	62.64	62.61
9 "	63.03	62.99	62.74	62.64
Mean	62.89	$62 \cdot 83$	62.60	62.54
	$62 \cdot 70$	$62 \cdot 76$	$62 \cdot 41$	$6 \cdot 47$

From this it would appear that on each of these days the temperature of \mathbf{O}_{1} exceeded by 0°.o6 that of $\mathbf{O l}_{1}$. We should therefore expect to find no difference in the determinations on these days, so far as can be ascertained by the indication of the thermometers in the bars.

In considering the magnitude of some of the errors shown in this Table, it must be borne in mind that the diameters of the dots on \mathbf{O}_{1} are each one hundred divisions. With this in view the errors are small.

The sum of the squares of the forty errors is $162^{\circ} 19$; hence the probable error of a siugle comparison is

$$
\begin{equation*}
\pm \cdot 674 \sqrt{\frac{162 \cdot 19}{40-2}}= \pm 1 \cdot 391 \tag{19}
\end{equation*}
$$

and the probable error of x is

$$
\begin{equation*}
= \pm 1 \cdot 391 \sqrt{\cdot 03400}= \pm 0 \cdot 256, \tag{20}
\end{equation*}
$$

and the probable error of y is

$$
\begin{equation*}
= \pm 1.391 \sqrt{.000296}= \pm 0.0239 \tag{21}
\end{equation*}
$$

Finally, at 62°, we have for the length of \mathbf{O}_{1}

$$
\begin{equation*}
\mathbf{O}_{1}=\mathbf{O} I_{1}-18 \cdot 38 \pm 0 \cdot 26 \tag{22}
\end{equation*}
$$

7.

We can now express the length of \mathbf{O}_{1} at 62° in terms of \mathbf{Y}_{55}, for we have found

$$
\begin{gathered}
\mathbf{O}_{1}=\mathbf{O I _ { 1 }}-18.38 \pm 0.256 \\
\mathbf{O I}_{1}=\frac{100}{3} \mathbf{Y}_{55}+2 \mathbf{I} .08 \pm 0.299 ;
\end{gathered}
$$

consequently, adding these equations, we get for the length of the Ordnance Survey Standard :-

$$
\begin{equation*}
\mathbf{O}_{1}=(3 ` 33333603 \pm \cdot 00000039) \mathbf{Y}_{\mathrm{bs}} \tag{23}
\end{equation*}
$$

and the logarithm by which all distances which have been expressed in terms of the Ordnance Standard \mathbf{O}_{1} will have to be multiplied is

0.00000035.

This result agrees very satisfactorily with that obtained with the old apparatus some years since from the Australian Standard Bars, which will be found in a subsequent section.

The probable error of the above determination of the leagth of $\mathbf{O}_{\mathbf{1}}$, expressed as a fraction of the whole length 10 feet, is

$$
\frac{1}{8,410,000} .
$$

8.

From the comparisons of \mathbf{O}_{1} and $\mathbf{O l}_{1}$ just detailed, we have seen that the expansion of \mathbf{O}_{1} is less than the expansion of $\mathbf{O I}_{1}$ by

$$
0.044^{6} \pm 0.0239
$$

But the absolute expansion of $\mathbf{O} \mathbf{I}_{1}$ we have found by direct experiment to be 21.055 $\pm{ }^{\circ} 089$; therefore the inferred expansion of $\mathbf{O}_{\mathbf{1}}$

$$
=21.010 \pm 0.092
$$

which is equivalent to 000006303 on unity for one degree Fabrenheit.
The rate of expansion deduced from comparisons with the Compensation Bars during the measurement of the base line on Salisbury Plain was 00000637 on unity. This agreement is tolerably satisfactory.

9.

There is a considerable difference between the average magnitude of errors of comparison of a foot, a yurd, and ten feet, as exhibited in the results of the observation we have just been discussing. If, disregarding the signs of the errors, we simply take the arithmetic mean in the seven different operations, we get the following average errors :-

> Left foot
> 0.36
> Right foot
> 0.54
> Left yard 0.68
> Left centre yard....... . . 0.85
> Right centre yard. I Ior
> Right yard 0.87
> Ten feet 1 . 75

Hence the average errors of a comparison on a foot, a yard, and ten feet are 0.45 ; $0.85 ; 1.75$; or as

$$
\text { r.00 : } \mathrm{r} \cdot 89: 3 \cdot 89 .
$$

These are not in the proportion of the corresponding lengths, but are not far from being in proportion to the square roots of the lengths. If, for instance, the errors were $0.53,0.92, \mathrm{I} .68$, they would be strictly as the square roots of the lengths, and these are not far, any of them, from the actual quantities.

VIII.

determination of the levath of The ORDNANCE TOISE.

There are, on the upper surface of this bar, as has already been described, four points $\alpha \beta \gamma{ }^{\delta}$

of which α and β are one yard apart, β and γ also one yard apart, and γ and $\delta 4.74$ inches apart; so that the whole length, or $[\alpha \cdot \delta]=76 \cdot 74$ inches approximately. Each of the spaces $[\alpha \cdot \beta]$ and $[\beta \cdot \gamma]$ has been directly compared with the copy No. 55 of the Standard Yard, and the space $[\gamma \cdot \hat{\delta}]$ with the space $[f \cdot \tau]$ on the bar $\mathbf{O F}$.

1.

The comparisons of the yard $[\beta \cdot \gamma]$ of the Ordnance Toise with Standard Yard No. 55 extend over twelve days. Eight days in October at an average temperature of about 59°, and four days in January 1864 at a temperature 41°. The comparisons of the yard [$\alpha \cdot \beta$] extend over ten days in October 1863 at a temperature averaging 60°, and four days in January 1864 at a temperature averaging 38°. In all, thirty comparisons of each yard; if here by "comparison" we mean the result of a single visit.

The observations were generally made three times in the day, at hours as far apart as practicable. The bars were observed in the following order \mathbf{Y}_{555} OT; OT, $\mathbf{Y}_{i 5}: \mathbf{Y}_{55}$ OT; (three readings of each microscope being taken;) or OT, $\mathbf{Y}_{55} ; \mathbf{Y}_{55}, \mathbf{O T}: \mathbf{O T}, \mathbf{Y}_{55}$; the bars left under the microscopes being thus alternately one and the other. Each visit supplies, thereforc, three independent comparisons, in all thirty-six micrometer readings.

Each bar has two thermometers, which are read the first thing and the last in each visit. In this series the mean increase of temperature as shown by the comparison of the thermometer readings at the commencement and close of each visit is $0^{\circ} \cdot 02$, being the effect of the warmth of the observer's body and of the candles.

The following copy of a page of the observation book shows the exact method of recording the observations:-
$Y_{\text {and }}[\beta \cdot \gamma]$

Date Observer.	Dar.	Micr. Readings.		Thernometera.	
		H	K	\mathbf{Y}_{55}	OT
$\begin{aligned} & \text { Jan. } 10 \\ & 9.15 \text { A. M. } \end{aligned}$	\mathbf{Y}_{65}	19.5	$12 \cdot 7$	$\begin{aligned} & 41 \cdot 37 \\ & 41 \cdot 35 \end{aligned}$	$\begin{aligned} & 41 \cdot 30 \\ & 41 \cdot 30 \end{aligned}$
		19.9	13.6		
		$19 \cdot 4$	14.2		
	OT	$4 \cdot 4$	13.4		
		$3 \cdot 6$	14.3		-
		$4 \cdot 3$	14.5		
	OT	$4 \cdot 4$	13.0		
		$4 \cdot 2$	13.5		
		$4 \cdot 5$	13.5		
	\mathbf{Y}_{65}	13.5	19.0		
		13.6	18.6		
		14.0	19.3		
	\mathbf{Y}_{65}	13.4	19.7		
		13.4	19.5		
		13.6	$18 \cdot 7$		
	OT	13.5	$3 \cdot 5$		
		13.6	$3 \cdot 3$	$4 \cdot 3^{8}$	$4 \mathrm{I} \cdot 31$
		13.8	$3 \cdot 5$	41-39	4I 3^{2}

The mean of the nine readings of H and K on Y_{ss} are

$$
15 \cdot 59 \ldots 17 \cdot 26
$$

The mean of the nine readings of H and K on OT are

$$
7 \times 37 \ldots 10 \cdot 28
$$

consequently if h and k be the values of one division in H and K respectively

$$
(15.59 h+17 \cdot 26 k)-(7.37 h+10.28 k)=8.22 h+6.98 k
$$

will be the difference of length resulting from this visit, and is virtually the mean of three comparisons.

The microscope H (invariably in all comparisons on the left) has its micrometer head to the left; K (invariably in all comparisons on the right) has its micrometer head to the right. The positive direction of measurement in either microscope (increasing readings) is towards the centre of the bar.
which to deduce x^{\prime} and y^{\prime}, and as many for x, and y. These last equations, viz., in x, y, being treated according to the method of least squares, resolve thenselves into the following :

$$
\begin{array}{r}
30 x-273.60 y-194.40=0 \\
-273.60 x+4739.51 y+2820.58=0 \tag{I}
\end{array}
$$

which give

$$
\begin{align*}
& x=+2.223 \\
& y=-0.4668 \tag{2}
\end{align*}
$$

The comparisons of the right yard afford the following :

$$
\begin{array}{r}
30 x^{\prime}-269.45 y^{\prime}-304.57=0 \\
-269.45 x^{\prime}+5637.54 y^{\prime}+4100 \cdot 94=0 \tag{3}
\end{array}
$$

where x^{\prime} is the excess of the length of the right yard above $Y_{0 ;}$ at 62°, and y^{\prime} the rate of relative expansion. The values resulting from thesc equations are

$$
\begin{align*}
& x^{\prime}=+6.34 \mathrm{I} \\
& y^{\prime}=-0^{\circ} 4^{2} 44 \tag{4}
\end{align*}
$$

From this it would appear as though one half of the bar OT had a slightly different rate of expansion from the other half. But this may well be attributed to errors in the operation, as the difference is small. If we assume, as is indeed necessary, that the rate of expansion is the same for the right yard as for the left, then the sixty comparisons must be combined in one series of equations containing three unknown quantities x, x^{\prime} and y.

The resulting equations are as follows:-

$$
\begin{array}{r}
30 x-273.60 y-194.40=0 \\
30 x^{\prime}-269.45 y-304.57=0 \tag{5}\\
-273.60 x-269.45 x^{\prime}+10377 \cdot 05 y+6921.52=0
\end{array}
$$

If we write $A B C$ for the absolute terms of these equations we have by elimination

$$
\begin{align*}
& x+0.0485620 \mathrm{~A}+0.0149977 \mathrm{~B}+0.0016698 \mathrm{C}=0 \\
& x^{\prime}+0.0149977 \mathrm{~A}+0.0481035 \mathrm{~B}+0.0016+45 \mathrm{C}=0 \tag{6}\\
& y+0.0016698 \mathrm{~A}+0.0016445 \mathrm{~B}+0.0001831 \mathrm{C}=0
\end{align*}
$$

While the numerical values are found to be

$$
\begin{align*}
& x=+2.451 \\
& x^{\prime}=+6.184 \tag{}\\
& y=-0.4418
\end{align*}
$$

If from equations (6) we write out the expression for the reciprocal of the weight of $\alpha x,+\beta x^{\prime}+\gamma y$ and then make $\alpha=\mathrm{I}, \beta=\mathrm{I}$, we get the reciprocal of the weight of $x+x^{\prime}+\gamma y$

$$
\begin{equation*}
\cdot 12666+\cdot 00663 \gamma+\cdot 000183 \gamma^{2} \tag{8}
\end{equation*}
$$

Now the length of the two yards taken together is at the temperature $62^{\circ}+f$ Fahrenheit

$$
x,+x+2 f y
$$

in excess of $2 \mathrm{Y}_{05}$ at the same temperature; and the weight of the determination at that temperature is the reciprocal of

$$
\begin{equation*}
\cdot 12666+\cdot 01326 f+\cdot 000732 f^{2} \tag{9}
\end{equation*}
$$

The following Table contains in contrast the observed differences of leugth, and the differences computed from the formulx $x+(t-62) y, x^{\prime}+(t-62) y$.

Comparison of Yarde of Ordnance Toise with the Standard Yard No. 55.

$[\beta \cdot \gamma]-\mathbf{Y}_{55}$			$[\boldsymbol{\alpha} \cdot \beta]-\mathbf{Y}_{55}$		
Observed.	Computed.	Error.	Obserred	Computed.	Error.
$2 \cdot 90$	2.52	$+0.38$	6.66	6.63	$+0.03$
4.07	$3 \cdot 41$	+ 0.66	$6 \cdot 1$	7.18	-0.77
3.19	$3 \cdot 33$	-0.14	8.32	$7 \cdot 20$	+ 1.12
2.74	$3 \cdot 32$	-0.58	7.68	$7 \cdot 26$	+ 0.42
$3 \cdot 26$	3.61	-0.3.5	8.63	7.66	+ 0.97
$2 \cdot 79$	$3 \cdot 54$	-0.75	5.60	6.18	-0.58
$4 \cdot 31$	$3 \cdot 47$	+ 0.84	5.67	6.69	- 1.02
$3 \cdot 33$	$3 \cdot 40$	-0.0\%	7.13	6.68	+ 9.45
$4 \cdot 52$	$3 \cdot 30$	+ 1.22	5.85	6.68	-0.83
3.22	$3 \cdot 25$	-0.03	$6 \cdot 70$	6.68	+ 0.02
3-19	3.45	-0.76	$7 \cdot 22$	$6 \cdot 13$	+ 1.09
$3 \cdot 31$	$3 \cdot 95$	-0.64	7.92	$6 \cdot 51$	+ 1.41
$3 \cdot 23$	$3 \cdot 95$	- 0.72	$6 \cdot 2+$	6.53	- 0.29
2.92	$4 \cdot 24$	- 1.32	7.70	$6 \cdot 56$	+ 1.14
4.61	$4 \cdot 23$	+0.38	6.79	$7 \cdot 35$	-0.56
3.44	$4 \cdot 23$	- 0.79	7.79	7.25	+ $0.5+$
$3 \cdot 26$	4.51	- 1.25	5.97	7.22	- 1.25
$4 \cdot 73$	4.50	+0.23	6.88	$7 \cdot 39$	-0.51
4.65	$4 \cdot 48$	+0.17	7.75	$7 \cdot 36$	+ 0.39
$4 \cdot 83$	$4 \cdot 77$	+ 0.06	8.34	$7 \cdot 37$	+ 0.97
11.72	12.09	- 0.37	18.88	17.23	+ 1.65
11.95	12.05	- 0.10	17.40	$16 \cdot 97$	$+0.43$
12.18	12.10	+ 0.08	15.09	15.88	- 1.79
12.79	12.01	+0.78	15.95	16.79	- 0.84
12.62	11.95	+ 0.67	15.79	16.65	- 0.86
12.03	11.82	+0.21	$16 .+8$	$16 \cdot+9$	- 0.01
12.09	11.72	+0.37	16.38	$16 \cdot 38$	+ 0.00
11.86	11.63	+0.23 $+\quad 0.52$	15.68	16.27	- 0.59
12.10	11.58	+ 0.52	15.89	$16 \cdot 17$	-0.28
$12 \cdot 56$	11.47	+ 1.09	15.78	16.11	-0.33

The sum of the squares of the differences or errors is $33^{\circ} 75$, consequently the probable error of a single comparison is

$$
\begin{equation*}
\pm \cdot 674 \sqrt{\frac{33 \cdot 75}{60-3}}= \pm \cdot 518 \tag{10}
\end{equation*}
$$

The probable error of $x+x^{\prime}$ is consequently

$$
\begin{equation*}
\pm .518 \sqrt{\cdot 12666}= \pm 0.18 \mathrm{r} \tag{II}
\end{equation*}
$$

The following Tables contain the result of the comparisons of the yards $[\alpha \cdot \beta]$ and [$\beta \cdot \gamma$] of the Ordnauce Toise with \mathbf{Y}_{55} : each line is the result of one visit.

Comparison of Yard [$\alpha \cdot \beta$] of Ordnance Tolse mith the Standard Yard.

Date.	Temp.	OT	$\mathbf{Y}_{\text {b }}$	Difference of Length in Micrometer Divisions.	$[a \cdot \beta]-\mathrm{Y}_{55}$
1863.					
Oct. 5	$60^{\circ} .98$	$+36.96 h-28.41 k$	+ 22.79h-5.96h	$-14.17 h+22.45 k$	+ 6.66
	$59 \cdot 73$	+ $70.96 h-55.42 k$	+ 0.31 $h+22.99 k$	$-70.65 h+78.41 k$	$6 \cdot 41$
	59.68	+ $67.32 h-50.92 k$	$-1 \cdot 10 k+27.66 k$	$-68.42 h+78.58 h$	$8 \cdot 32$
	59.56	$\underline{+10.04 h}+6.09 h$	$-10.96 h+36.63 h$	- $21.00 h+30.54 h$	7.68
"7	58.66	+86.72h-65.48h	$-18.78 h+50.43 h$	$-105.50 h+115.91 h$	8.63
" 8	62.01	$-17.48 h+16.86 k$	$-57.48 h+63.72 k$	$-40.00 h+46.86 h$	5.60
" 9	60.84 60.87	$-62.88 h+73.76 h$	$-99.40 h+117.24 k$	$-36 \cdot 52 h+43 \cdot 48 h$	5.67
"	60.87 60.87	$-76.58 h+87.87 h$	$-113.07 h+133.16 h$	$-36.49 h+45.29 h$	$7 \cdot 13$
" ${ }^{\prime \prime}$	60.87	$-70.96 h+81.43 k$	$-120.79 h+138.39 k$	$-49.83 h+56.96 h$	$5 \cdot 85$
", 10	60.87	$-92.14 h+102.63 h$	$-121.36 h+140.14 h$	$-29.22 h+37.51 k$	6.70
, 23	62.11	$-16.07 h+16.29 h$	$-28.59 h+37.80 h$	$-12.52 h+21.5 \mathrm{x} h$	7.22
, 24	61.26	$-16.03 h+15.29 h$	$-14.09 h+23.28 h$	$+1.94 h+7.99 k$	$7 \cdot 92$
	61.20	$-4.31 h+5.02 h$	$-6.54 h+15.06 k$	$-2.23 h+10.04 k$	$6 \cdot 24$
	61.14	+ $12.92 h-12.44 h$	+ $13.33 h-3.20 k$	$+0.41 h+9.24 k$	7.70
$" 26$	59.36	+ 3.71 $h+1.64 k$	$+3.78 h+10.07 k$	+ $0.07 h+8.43 k$	6.79
"	59.57 59.64	$-4.89 h+8.24 k$ $+\quad 2.78 h-0.29 k$	$-\quad 8.40 h+21.50 h$ $+\quad 0.22 h+0.73 h$	- $3.51 h+13.26 k$	7.79
", 27	$59 \cdot 64$ $59 \cdot 26$	$+\quad 2.78 h-0.29 k$ $+11.13 h-8.15 k$	$+0.22 h+9.73 h$ $+2.60 h+9.01$	$-8.56 h+10.02 h$ $-8.53 h+17.12 k$	5.97 6.88
	$59 \cdot 32$	- 1.01 $k+3 \cdot 16 k$	$+1.68 h+10.20 h$	+ $2.69 h+7.04 h$	7.75
	59.31	+ $14.47 h-12.33 k$	+ $4.09 h+8.46 k$	$-10.38 k+20.79^{k}$	8.34
Jan. 12	35.99	$+10.95 h+20.49 k$	+ $23.86 h+31.29 h$	$+12.91 k+10.80 k$	18.88
	37.57	+19.22h + $11.00 h$	$+31 \cdot 18 h+20.89 k$	$\|+11 \cdot 96 h+9 \cdot 89 h\|$	17.40
	37.79	$+23.38 h+8.83 h$	$+33.29 h+17.87 h$	+ 9.91h+9.04h	15.09
$\# 13$	37.98 37.91 3	$+20.51 h+8.38 h$ $+15.30 h+10.96 h$	+ $33.24 h+15.68 h$ $+28.78 h+17.31 k$	+ $12.73 h+7.30 h$ $+13.48 h+6.35 h$	15.95 15.79
	$38 \cdot 31$ 38.67	$+15.30 h+10.96 k$ $+16.5+h+8.31 h$		$+12.48 h+1.35 h$ $+\quad 7.18 h+13.50 h$	15.79 16.48 16.88
" 14	$3^{8.92}$	+10.32h+13.06k	$+27.68 h+16.29 h$	+ $17.36 h+3.23 h$	16.38
" "	$39 \cdot 17$	+12.92h + 9.81h	$+2 \mathrm{~L} .88 h+20.54 h$	$+8.96 h+10.73 h$	15.68
	$39 \cdot 39$	$+6.63 h+15.62 h$ $+13.62 h+6.67 h$	+ $12.12 h+30.07 h+$	+ $5 \cdot 49 h+14.45 k$ $+\quad 3.04 h+22.80 k$	15.89 15.78
	$39 \cdot 52$	$+13.62 h+6.67 h$	$+10.58 h+29.47 h$	$+3.04 n+22.80 k$	$15 \cdot 78$

The temperatures in these tables aro corrected for crrors of thermometers.

Comparison of Yard $[\beta \cdot \gamma]$ of Ordnance Toise with the Standard Yard.

Date.	Terup.	OT	$\mathbf{Y}_{\text {cs }}$	Difference of $\mathrm{I}_{\kappa \text { ng }} \mathrm{h}_{\mathrm{t}}$ in Mierometer Divisions.	$[\beta \cdot \gamma]-\mathbf{Y}_{\text {ss }}$
1863.					
Oct. 10	$6_{1}{ }^{\circ} 85$	+ $7.87 h+11.49 k$	+ 11.26 ${ }^{\text {a }}$ + 11.76k	+ 3.39k $+0.27 k$	+ 2.90
, 12	59.82	+ $50.44^{h}-18.61 k$	+ 87.03h-49.96h	+ $36 \cdot 59$ - 31.35^{k}	4.07
"	60.01	$+43.53 h-12.54 k$	+ 81.86h-46.73k	+ $3^{8 \cdot 33} h-34 \cdot 19 h$	$3 \cdot 19$
" " ${ }^{\prime \prime}$	60.04	+ $99.62 h-69.03 k$	$+138.51 h-104.34 k$	+ ${ }^{8.89} 9.35031 k$	2.74 3.26
", 13	59.38	$+117.66 h-83.31 k$ $+108.03 k-8.37 k$	$+141.29 k-102.77 k$ +14129	$+23.63 h-19.46 k$ $+23.61 h-20.03 k$	3.26 2.79
" "	59.54	$+108.09 h-74.37 h$ +107.3 l +1	+131.70h-9+.40k	$+23.61 h-20.03 k$ +30.46 - $2.97 k$	2.79 +7.31
" ${ }^{\prime \prime}{ }^{\prime \prime}$	59.68	$+107.34 h-75.79 h$ $+100.97-90.62$	+137.83 $+158.700 .76 h$	$+30.49 h-2+.97 k$ $+37.80 h-3.3^{6} h$	4.31
" 14	59.85 60.07	$+120.97 h-90.62 h$ $+98.30 h-69.66 k$		$+37.80 h-33+8 k$ $+51.57 h-4.71 k$	$3 \cdot 33$
", ",	60.07 60.20	$+98.30 h-69.66 k$ $+29.11 h-0.49 k$	$+149.87 h-115.37 h$ $+60.74 h-27.96 h$	$+51.57 h-+5.71 k$ $+31.63 h-27.47$	4.52 3.22
" ",		+ 29.11 l - $0.49 k$	$+60.74 h-27.96 k$	$+31.63 h-27.47 k$	
, 28	58.61	$-13.54 h+17.53 k$	+ 10.17h-2.09k	$+23.71 k-19.62 k$	3.19
"	58.60	- $7.42 h+11.21 k$	+ 10.34h-2.34k	+ $17.76 h-13.55 h$	$3 \cdot 31$
" $\quad 3$	58.61	$+22.31 \%-18.09 h$ $+15.66 h-7.39 h$	$+42 \cdot 70 h-34.36 k$ $+18.51 h-6.56 h$	$+20.39 h-16.27 h$ $+\quad 2.8 h+0.83$	$3 \cdot 23$
" 29	57.94	+ $15.66 h-7.39 k$	+ $18.51 h-6.56 h$	$+2.85 h+0.83 k$	2.92
	57.96	$+6.38 h+0.96 h$	$+36.64 h-23.41 h$	+ $30.26 h-24.37 k$	4.61
" " ${ }^{\prime \prime}$	57.96	$+10.32 h-2.17 h$	$+35.78 h-23.22 h$	+ $25.46 h-21.05 h$	$3 \cdot+4$
" 30	57.34	+ $15.30 h-3.57 h$	+ $30.40 h-14.52 h$	+ $15.10 h-10.95 k$	3.26
	$57 \cdot 36$	+ $2.53 h+7.48 k$	+ $11.67 h+4.31 h$	+ 9.14h ${ }^{2}$ - $3.17 k$	4.73
	57.40 56.76	+ $7.56 h+3.58 k$	$+33.33 h-16.27 k$ $+1.26 k-1.54$	$+25.77 h-19.85 k$ $+22.50 h-16.36 k$	+6.65
" 31	56.76	- $1.24 h+14.82 k$	+ $21.26 h-1.54 h$	$+22.50 h-16.3^{6 k}$	$4 \cdot 83$
Jan. 15	40.18	$+6.34 h+16.79 h$	+15.26h+22.59k	+ 8.92h $+5.80 k$	11.72
	40.26	+ $14.28 h+7.91 h$	+ $23.23 h+13.98 h$	+ 8.9.9h+6.07h $+8.75 h+7.54$	11.95 12.15
$\Rightarrow 16$	40.15	+ $6.82 h+16.57 k$	+ $14.57 h+24.11 h$	$+7.75 h+7.54 k$	12.18 12.70
	$40 \cdot 36$ $40 \cdot 5$	$+9.23 h+12.15 k$ $+17.66 h+3.02 k$	$+16.20 h+21.24 h$ $+26.24 h+10.29 h$	$+6.97 k+9.09 k$ +8.58 C +8.27	12.79 12.62
" $\quad 18$	40.50 40.80	$+17.66 h+3.02 k$ $+15.03 h+4.87 k$	$+26.24 h+10.29 h$ $+20.96 h+14.04 h$	$+8.58 h+7.27 h$ $+5.93 h+9.17 h$	12.62 12.03
	41.01	$+12.07 h+6.46 k$	+ $12.10 h+21.59 k$	$+0.03 h+15.13 k$	12.09
	41.23	+ $11.61 \%+5.93 k$	$+15.97 h+16.46 h$	$+4.36 h+10.53 k$	11.86
, 19	$41 \cdot 34$	+ $7.37 h+10.28 h$	+ $15.59 h+17.26 h$	+ 8.22h $+6.98 k$	12.10
	41.59	+ 7.14 $h+8.53 h$	$+10.94 h+20.49 k$	$+3.80 h+11.96 k$	$12 \cdot 56$

Let $x^{\prime} x$, be the excesses of lengths of the yards $[\alpha \cdot \beta],[\beta \cdot \gamma]$ above $\mathbf{Y}_{0 s}$ at $62^{\circ}, y^{\prime} y$. the differences of expansion, so that

$$
x^{\prime}+f y^{\prime}, x,+f y
$$

are the excesses of lengths of the yards above $\mathbf{Y}_{b 5}$ at the temperature of $6 \mathbf{2}^{\circ}+f^{+}$ Fabrenheit. The quantity f being given at each comparison, we have thirty equations from
which to deduce x^{\prime} and y^{\prime}, and as many for x, and y. These last equations, viz., in x, y, being treated according to the method of least squares, resolve themselves into the following :

$$
\begin{array}{r}
30 x-273.60 y-194.40=0 \\
-273.60 x+4739.5 \text { I } y+2820.58=0 \tag{I}
\end{array}
$$

which give

$$
\begin{align*}
& x=+2.223 \\
& y=-0.4668 \tag{2}
\end{align*}
$$

The comparisons of the right yard afford the following:

$$
\begin{array}{r}
30 x^{\prime}-269.45 y^{\prime}-304.57=0 \\
-269.45 x^{\prime}+5637.54 y^{\prime}+4100 \cdot 94=0 \tag{3}
\end{array}
$$

where x^{\prime} is the excess of the length of the right yard above Y_{55} at 62°, and y^{\prime} the rate of relative expansion. The values resulting from these equatious are

$$
\begin{align*}
& x^{\prime}=+6 \cdot 341 \\
& y^{\prime}=-0.4244 \tag{4}
\end{align*}
$$

From this it would appear as though one half of the bar OT had a slightly different rate of expansion from the other half. But this may well be attributed to errors in the operation, as the difference is small. If we assume, as is indeed necessary, that the rate of expansion is the same for the right yard as for the left, then the sixty comparisons must be combined in one series of equations containing three unknown quantities x, x^{\prime} and y.

The resulting equations are as follows:-

$$
\begin{array}{r}
30 x-273.60 y-194.40=0 \\
30 x^{\prime}-269.45 y-304.57=0 \tag{5}\\
-273.60 x-269.45 x^{\prime}+10377.05 y+6921.52=0
\end{array}
$$

If we wite $\mathrm{A} \mathrm{B} C$ for the absolute terms of these equations we have by elimination

$$
\begin{align*}
& x+0.0485620 \mathrm{~A}+0.0149977 \mathrm{~B}+0.0016698 \mathrm{C}=0 \\
& x^{\prime}+0.0149977 \mathrm{~A}+0.0481035 \mathrm{~B}+0.00164+5 \mathrm{C}=0 \tag{6}\\
& y+0.0016698 \mathrm{~A}+0.0016445 \mathrm{~B}+0.0001831 \mathrm{C}=0
\end{align*}
$$

While the numerical values are found to be

$$
\begin{align*}
& x=+2.45 \mathrm{I} \\
& x^{\prime}=+6.184 \tag{-}\\
& y=-0.4418
\end{align*}
$$

If from equations (6) we write out the expression for the reciprocal of the weight of $\alpha x+\beta x^{\prime}+\gamma y$ and then make $\alpha=\mathrm{I}, \beta=\mathrm{I}$, we get the reciprocal of the weight of $x+x^{\prime}+\gamma y$

$$
\begin{equation*}
\cdot 12666+\cdot 00663 \gamma+\cdot 000183 \gamma^{2} \tag{8}
\end{equation*}
$$

Now the length of the two yards taken together is at the temperature $62^{\circ}+f$ Fahrenheit

$$
x,+x^{\prime}+2 f y
$$

in excess of $2 \mathbf{Y}_{05}$ at the same temperature; and the weight of the determination at that temperature is the reciprocal of

$$
\begin{equation*}
\cdot 12666+\cdot 01326 f+\cdot 000732 f^{2} \tag{9}
\end{equation*}
$$

The following Table contains in contrast the observed differences of length, and the differences computed from the formulx $x,+(t-62) y, x^{\prime}+(t-62) y$.

Comparison of Yards of Ordnance Toise with the Standard Yard No. 55.

$[\beta \cdot \gamma]-\mathbf{Y}_{05}$			$[x \cdot \beta]-\mathbf{Y}_{6}$		
Observed.	Computed.	Erior.	Obscrved.	Computed.	Error.
2.90	4.52	$+0.38$	6.66	6.63	$+0.03$
4.07	$3 \cdot+1$	$+0.66$	$6 \cdot+1$	7.18	-0.77
$3 \cdot 19$	$3 \cdot 33$	-0.14	$8 \cdot 32$	$7 \cdot 20$	+1.12
2.74	$3 \cdot 32$	-0.58	7.68	7.26	$+0.42$
$3 \cdot 26$	3.61	-0.35	8.63	7.66	$+0.97$
$2 \cdot 79$	$3 \cdot 54$	-0.75	$5 \cdot 60$	$6 \cdot 18$	-0.58
4.31	$3 \cdot 47$	$+0.84$	5.67	6.69	-1.02
$3 \cdot 33$	$3 \cdot 40$	-0.07	$7 \cdot 13$	6.68	$+8 \cdot 45$
4.52	$3 \cdot 30$	$+1.22$	5.85	6.68	-0.83
3.22	3.25	-0.03	$6 \cdot 70$	6.68	$+0.02$
$3 \cdot 19$	3.95	-0.76	7.22	$6 \cdot 13$	$+1.09$
$3 \cdot 31$	$3 \cdot 95$	-0.64	7.92	$6 \cdot 51$	$+1 \cdot 4 \mathrm{I}$
$3 \cdot 23$	$3 \cdot 95$	-0.72	$6 \cdot 24$	$6 \cdot 53$	-0.29
2.92	$4 \cdot 24$	- $1 \cdot 32$	$7 \cdot 70$	$6 \cdot 56$	+ 1.14
4.61	$4 \cdot 23$	+0.38	$6 \cdot 79$	$7 \cdot 35$	-0.56
3.44	$4 \cdot 23$	-0.79	$7 \cdot 79$	$7 \cdot 25$	$+0.54$
$3 \cdot 26$	$4 \cdot 51$	- 1.25	5.97	7.12	-1.25
$4 \cdot 73$	$4 \cdot 50$	+0.23	6.88	7.39	-0.51
4.65	$4 \cdot 48$ 4.77	+0.17 +0.06	7.75 8.34	$7 \cdot 36$	+0.39 +0.97
4.83	4.77	$+0.06$	$8 \cdot 34$	$7 \cdot 37$	$+0.97$
11.72	12.09	-0.37	18.88	17.23	$+1.65$
11.95	12.05	-0.10	17.40	16.97	$+0.43$
12.18	12.10	$+0.08$	15.09	16.88	- 1.79
12.79	12.01	$+0.78$	15.95	16.79	- 0.84
12.62	11.95	+ 0.67	1.5 .79	16.65	-0.86
12.03	15.82	+0.21 +0.37	16.48	$16 .+9$	-0.01
12.09	11.72	+ 0.37	16.38	$16 \cdot 38$	$+0.00$
11.86	11.63	+0.23 $+\quad 0.52$	15.68	16.27	-0.59
12.10 12.56	11.58	+0.52 $+\quad 1.09$	15.89	16.17	-0.28
12.56	II•47	$+1.09$	15.78	16.11	-0.33

The sum of the squares of the differences or errors is $33^{\circ} 75$, consequently the probable error of a single comparison is

$$
\begin{equation*}
\pm \cdot 674 \sqrt{\frac{33 \cdot 75}{60-3}}= \pm \cdot 518 \tag{io}
\end{equation*}
$$

The probable error of $x,+x^{\prime}$ is consequently

$$
\begin{equation*}
\pm \cdot 518 \sqrt{\cdot 12666}= \pm 0.184 \tag{II}
\end{equation*}
$$

The probable error of y is

$$
\begin{equation*}
\pm \cdot 518 \sqrt{ } \cdot \overline{000183}= \pm 0 \cdot 0070 \tag{12}
\end{equation*}
$$

Finally, the lengths of the two yards of OT in terms of \mathbf{Y}_{56} at the temperature t are

$$
\begin{align*}
& {[\beta \cdot \gamma]=\mathbf{Y}_{\mathrm{sb}}+2.45-0.4418(t-62)} \\
& {[\alpha \cdot \beta]=\mathbf{Y}_{\mathrm{sb}}+6.18-0.4418(t-62)} \tag{13}
\end{align*}
$$

2.

The small space of $4 \cdot 74$ inches on the right of the Ordnance Toise was compared on three successive days with the space $[\tau \cdot f]$ of $\mathbf{O F}$, whose value we have already determined in terms of standard yard No. 55. The individual comparisons, three in each visit, recorded in exactly the same form as at page 97, are shown in the following Table:

Comparison of Space $[\gamma \cdot \delta]$ on Ordnance Toise with $[\tau \cdot f]$

Date.	Temp.	[$\gamma \cdot \delta$]	[$f \cdot r$]	Difference of Length in Micrometer Divisions.	$[\gamma \cdot \delta]-[f \cdot \tau]$
1863.					
Oct. 15	$62 \cdot 48$	+ $28.40 k-25.83 k$	$-21.33 h+28.53 k$	$-49.73 h+54.36 k$	+3.85
" "	62.48	- 8.43h+11.10k	- $20.87 h+28.23 h$	- $12.44 h+17.13 k$	3.78
" ",	62.48	- $7.77 h+11.50 h$	- $25.87 h+32.37 k$	- $18.10 h+20.87 h$	2.26
" "	62.76	+ 4.03h-2.50k	$-25.40 h+31.13 k$	$-29.43 h+33.63 h$	3.45
" "	62.76	+ 4.43k- $1.90 k$	$-3.53 k+10.27 k$	- $7.96 h+12.17 k$	$3 \cdot 39$
	62.76	- $4.53 h+6.90 k$	$-4.00 h+10.47 k$	$+0.53 h+3.57 k$	3.27
16	62.26	$+4.23 h-0.07$	$-35.23 h+42 \cdot 37 h$	$-39 \cdot 46 h+42 \cdot 44^{h}$	2.50
	62.26	$-50.50 h+53.47 k$	$-35 \cdot 13 h+42 \cdot 73 k$	$+15.37 h-10.74 k$	3.65
	62.26	$-50.37 h+53.40 k$	- 96.27h+103.70h	$-45.90 h+50.30 h$	$3 \cdot 65$
	62.33	$-127.03 h+129.00 k$	$-97.00 h+103.27 h$	$+30.03 h-25.73 k$	$3 \cdot 34$
	62.33	$-128.13 k+128.90 k$	$-87.33 h+92.50 k$	+ $40.80 h-36.40 k$	$3 \cdot 38$
	62.33	$-116.87 h+118.17 k$	- $86.07 h+92.77 h$	$+30.80 h-25.40 k$	$4 \cdot 21$
" ",	$62.4{ }^{1}$	$-117.50 h+120.43 k$	$-66.23 h+72.53 h$	$+51.27 h-47.90 k$	2.53
	62.41	$-111.93 h+114.67 k$	$-65.60 h+72.67 k$	$+46.33 h-42.00 k$	$3 \cdot 31$
$"$	62.41	$-111.87 h+114.80 h$	$-62.83 h+69.50 h$	$+49.04 h-45.30 k$	2.83
" "	62.53 62.53	$-112.00 h+114.27 k$ $-112.10 h+114.10 k$	$-72.63 h+80.23 h$ -80.50	$+39.37 h-34.04 h$ $+31.60 h-26.37 h$	4.14 4.08
" "	62.53	$-112.10 h+114.10 k$	-80.50h+87.73k	$+31.60 h-26.37 h$ $+21.57 h-17.50 h$	4.08 3.19
"	62.53 62.71	$-101.67 h+105.17 k$ $-105.73 h+107.47$	- $80.10 h+87.67 k$	$+21.57 h-17.50 h$ $+41.33 h-36.50 h$	$3 \cdot 19$ $3 \cdot 72$
" ",	62.71 62.71	$-105.73 h+107.47 k$ $-79.93 h+82.63 h$	$-64.40 h+70.97 k$ $-64.20 h+71.20 h$	$+41.33 h-36.50 h$ $+15.73 h-1143 h$	$3 \cdot 72$ $3 \cdot 38$
	62.71	$-80.30 k+82.40 k$	$-76.80 h+83.20 h$	$+3.50 h+0.80 h$	$3 \cdot 41$
", 17	62.54	$-158.70 h+159.67 h$	$-50.57 h+57.07 h$	$+108.133^{h}-102.60 k$	4.09
	62.54	$-158.20 h+159.70 k$	$-98.70 h+103.93 h$	$+59.50 h-55.77^{h}$	2.80
	62.54	$-168.90 h+170.13 k$	$-98.10 h+103.83 k$	$+70.80 h-66.30 h$ $+58.44 h-54.76 h$	3.37 2.76
	62.59	$-173.47 h+173.43 k$	$-115.03 k+118.67 k$	$+58.44{ }^{h}-54.76 h$	$2 \cdot 76$
	62.59	$-1+9.03 h+149.33^{k}$	$-114.70 h+119.40 k$	$+34.33^{h}-29.93^{h}$	$3 \cdot 41$
	62.59	$-149.53 h+149.93 k$	$-109.57 h+114.50 k$	$+39.96 h-35.43 k$	$3 \cdot 50$
	62.72	$-165.37 h+167.07 k$	$-109.50 h+114.40 h$	$+55.87 h-52.67 h$	$2 \cdot 38$
$"$	62.72	$-165.93 h+166.40 h$	$-102.60 k+107.50 k$	$+63.33 h-58.90 h$	$3 \cdot 34$
"	62.72	$-159 \cdot 33^{h}+159.33^{k}$	$-102.90 h+107.00 h$	$+56 \cdot 43 h-52 \cdot 33 k$	$3 \cdot 10$

From this we find for the space on OT the value

$$
[\gamma \cdot \delta]=[\tau \cdot f]+3 \cdot 34
$$

at the temperature $62^{\circ} \cdot 53$. The sum of the squares of the errors is 7.875 , consequently the probable error of a single comparison is

$$
\begin{equation*}
\pm .674 \sqrt{\frac{7.875}{30-1}}= \pm 0.351 \tag{I4}
\end{equation*}
$$

and the probable error of the mean of 30 determinations

$$
\begin{equation*}
\pm \frac{.351}{\sqrt{30}}= \pm 0.064 \tag{15}
\end{equation*}
$$

But we require the difference of length at 62°. We have seen by equations (7) and (8), page 77 , that

$$
\mathbf{F}=\frac{1}{3} \mathbf{Y}_{55}-0.36+0.0066(t-62)
$$

with the probable error

$$
\pm\left\{.011715+.001256(t-62)+.0000488(t-62)^{2}\right\}^{\ddagger}
$$

Therefore

$$
\frac{474}{1200} \mathbf{F}=\frac{474}{3600} \mathbf{Y}_{55}-0.14+.0026(t-62)
$$

with a probable error

$$
\pm\left\{.001828+.000196(t-62)+.00000-6(t-62)^{2}\right\}^{\frac{1}{2}}
$$

Also by equation 46 , page 71 , we have

$$
[\tau \cdot f]=\frac{474}{1200} F-3 \cdot 10 \pm 0.119
$$

Hence

$$
[\tau \cdot f]=\frac{474}{3600} \mathbf{Y}_{55}-3.24+.0026(t-62)
$$

with a probable error at the temperature t of

$$
\pm\left\{.015989+.000196(t-62)+.0000076(t-62)^{2}\right\}^{\ddagger}
$$

Now let the small space on OT at 62° be equal to $\frac{474}{3600} \mathbf{Y}_{s s}+u$, then at the temperature t its length will be

$$
[\gamma \cdot \delta]=\frac{474}{3600} \mathbf{Y}_{55}+u+\frac{474}{3600} y(t-62)
$$

where y is the excess of the expansion of a yard of OT above the expansion of \mathbf{Y}_{55} for I° Fahrenheit.

Now this space exceeds $[\tau \cdot f]$ by

$$
u+3.24+\left[\begin{array}{c}
474 \\
3600
\end{array} y-.0026\right](t-62)
$$

and the observed value (for $t=62^{\circ} \cdot 53$) we have just found to be 3.34 ± 0.064; consequently

$$
u=3.34-3.24+.0026(t-62)-\frac{474}{3600} y(t-62)
$$

Here $y=-\cdot 4418 \pm \cdot 0070$ and

$$
\frac{474}{3600} y=-.0582 \pm \cdot 0009
$$

Consequently we have

$$
x=+0 . \mathrm{I} 3
$$

The probable error of u is composed of three independent parts; namely, first, that of the quantity $3 \cdot 34$; second, that of $[\tau \cdot f]$ or $-3 \cdot 24+\cdot 0026(t-62)$, when $t=62.53$; and, third, that of the fraction of y. This last, however, becomes insensible. Thus the total probable error of u

$$
\pm\{\cdot 004096+\cdot 015989+\cdot 000103+\cdot 000002\}^{\frac{1}{2}}= \pm 0 \cdot 142
$$

3.

The three spaces of which the Ordnance Toise is composed are then as follows:

$$
\begin{array}{ll}
[\alpha \cdot \beta]=] & \mathbf{Y}_{55}+6 \cdot 18 \\
{[\beta \cdot \gamma]=} & \mathbf{Y}_{b 5}+2 \cdot 45 \\
{[\gamma \cdot \delta]=\frac{474}{3600} \mathbf{Y}_{b 5}+0 \cdot 13}
\end{array}
$$

the sum of which is

$$
[a \cdot i]=\frac{7^{6} 74}{3600} Y_{55}+8 \cdot 76 \pm \sqrt{(\cdot 142)^{2}+(\cdot 184)^{3}}
$$

As in the case of the bar OF we have used the letter F as an algebraic symbol for the length of the bar, so now we shall use T_{\circ} to represent the length of the Ordnance Toise. We have then,

$$
T_{o}=(2 \cdot 13167543 \pm \cdot 00000023) Y_{i s}
$$

both bars ${ }^{5}$ being at the temperature of 62° Fabrenheit.
The total number of micrometer readings from which this result is obtained is $\mathbf{2 5 2 0}$.

[^2]
DETERMINATION OF THE LENGTH OF THE

ORDNANCE METRE.

This bar, which is exactly the same in section as the Orduance Toise, carries on its upper surface threc disks a, b, c of platinum, so defining by lines the length of the yurd and metre, or at least very approximately those lengths. The determination of the length of the bar therefore divides itself into two parts; first, the determination of the true length of the yard space $[a \cdot b]$; and, secondly, the determination of the length of the small space $[b \cdot c]$ of 3.3^{8} inches.
 on the following days, March 8, 9, 10, 11, 12, 14; July 5, 6, $7,25,26,27,28$; in all forty comparisons or visits. Of these, fifteen were at a temperature averaging about 46°, and the remainder at an average temperature of about 64°. Thus both the length at 62° and the relative expansion are well determined. In these comparisons the yard $\gamma_{i s}$ lay in the same box with OM, the bars occupying altemately the inner and outer position. The focal adjustment was renewed at nearly every comparison. The following Table contains the result of each visit. The temperatures are corrected for errors of thermometers.

Comparisons or Ordnance Metre and Standard Yard No. 55.

Date.	Temp.	$\mathbf{Y}_{5 s}$	OM	Difference in Micrometer llivisions.	$[a \cdot b]-\mathrm{Y}_{\text {b }}$
1864.					
March 8	47.91	$2 \mathrm{~T} .00 h+2 \mathrm{~T} \cdot 48 k$	$23.75 h+32.68 h$	- $2.75 h+8.80 h$	
$\text { , } \quad 9$	47.59	$26.92 h+18.48 k$	$19.60 h+20.00 h$	+ $7.26 h-1.52 k$	+4.84 $+\quad 4.56$
" "	47.65	$24.68 h+20.12 k$	$17.80 h+20.48 h$	$+6.88 h-0.36 k$	+ 5.18
	47.55 46.85	$22.40 h+22.78 k$	$25.00 h+14.30 h$	$-2.60 h+8.48 k$	+ 4.70
	$46 \cdot 85$ 46.78	$27.68 k+21.74 k$ $30.20 k+20.15 k$	$23.18 h+20.02 h$ $37.78 h+16.15 h$	+ $4.50 h+1.72 k$	+ $4 \cdot 95$
" "	46.78 46.62	$30.20 h+20.15 h$ $28.58 h+21.53 h$	$27.78 h+16.15 h$ $18.15 h+25.52 k$	$+2.42 h+4.00 h$ $+10.43 h-3.99 k$	+ $+\quad 5.12$ $+\quad 5.11$
" 11	46.00	$31.90 h+23.35 k$	$24.52 h+23.72 k$	$+10.43 h-3.99$ +7.38	+5.11 $+\quad 5 \cdot 57$
" "	$46 \cdot 02$	$32.85 k+21.36 k$	$32.05 k+14.98 k$	$+0.80 h+6.38 k$	+ 5.73
" ${ }^{\prime \prime}$	45.98	$27.82 h+25.92 k$	21.10h $212.95 h$	$+6.72 h+0.17 k$	+ +8
" $\quad 12$	$45 \% 1$ 4.87	$25.72 h+30 \cdot 42 k$ $26.05 h+28.93 k$	$18.48 h+30.05 k$ $24.05 h+24.85$	$+7.2+h+0.37 k$	+6.05
	45.87 45.82	$26.05 k+28.93 k$ $23.78 k+30.98 k$	$24.05 h+24.85 k$ $29.50 k+18.57$	+ $2.00 h+4.08 h$	+4.85 $+\quad 5.36$
" ${ }^{\prime \prime}{ }^{\prime \prime}$	45.39	$23.43 k+33.80 k$	$29.58 h+18.57 k$ $22.18 h+27.83 k$	- $5 \cdot 72 h+12 .+1 h$	$+\quad 5 \cdot 36$ $+\quad 5.76$
"	$45 \cdot 55$	$23.48 h+30.93 k$	$21.63 h+26.36 h$	$+1.85 h+4.57 h$	+ 512
11429,					0

Comparisons of Ordnance Metre and Standard Yard No. 55-continued.

The irregularity of the resulta during the last few day's is greater than usual ; it attracted special attention at the time of making the observations, but no explanation could be perceived. This is the more remarkable as the temperature was unusually steady during the four days in question.

Let the excess of the yard on $O M$ above Y_{55} be, at $62^{\circ},=x$, and let the excess of the expansion of a yard of $O M$ for I° above the expansion of \mathbf{Y}_{55} be $=y$, then at any temperature t the length of $[a \cdot b]=\mathbf{Y}_{\mathrm{tb}}+x+(t-62) y$. Now we have in the above Table forty observed differences of length at given temperatures, and these give forty equations from which to ascertain x and y.

Solving these equations by the method of least squares, there results;

$$
\begin{array}{r}
40.00 x-183.650 y-27 \cdot 490=0 \\
-183.65 x+3805 \cdot 187 y+1343 \cdot 395=0 \tag{I}
\end{array}
$$

If we put A and B for the absolute terms we get

$$
\begin{align*}
& x+.0321167 \mathrm{~A}+.0015500 \mathrm{~B}=0 \\
& y+.0015500 \mathrm{~A}+.0003376 \mathrm{~B}=0 \tag{2}
\end{align*}
$$

restoring the values of A and B

$$
\begin{align*}
& x=-\mathrm{I} \cdot 199 \\
& y=-0.4109 \tag{3}
\end{align*}
$$

The length, therefore, of the yard on OM at the temperature f is

$$
\begin{equation*}
[a \cdot b]=\mathrm{Y}_{53}-1 \cdot 20-0.4109(t-62) \tag{4}
\end{equation*}
$$

The reciprocals of the weights of the determinations of x and y are, from equation (2),

$$
\begin{align*}
& x \ldots . .0 .03212 \\
& y \ldots . . .0 .00034 \tag{5}
\end{align*}
$$

Substituting the values of x and y in the equations of condition, we obtain the crrors of the different comparisons, as shown in the following Table.

Table of Errons of Comparisons of the Yamd on OM with $\mathbf{Y}_{\text {g }}$.

Date.		Error.	Date.	Error.	j)ate.	Error.	I)		Errur.
March		+0.25	March 12	+0.56	July 7	-0.35	July		+0.78
"	9	-0.15		-0.58	" ${ }^{\text {\% }}$	+0.00	"	97	+1.12
"		+0.48	" "	-0.09	" "	-0.31	"		$+0.33$
"		-0.04	" 14	$+0.13$	" ${ }^{\prime \prime}$	-0.51	"	-	-0.01
"	10	-0.08		-0.44	" 25	-0.19	"		-1.53
"	"	$+0.07$	July 5	-1.23	" "	-0.46			+0.09
"		-0.01	" 6	-0.74	" "	-1.31			$+0.83$
"	11	$+0.20$	"	-0.13		-0.21	"	"	$+0.94$
"	"	$+0.36$		-0.14	$\Rightarrow \quad 26$	$+0.97$	"		+0.80
		$+0.10$		-0.27	"	$+0.84$		"	-0.02

Hence we find the probable error of a single comparison to be

$$
\begin{equation*}
\pm .674 \sqrt{\frac{14.216}{40-2}}= \pm 0.412 \tag{6}
\end{equation*}
$$

The probable error, therefore, of x is

$$
\begin{equation*}
\pm 0.412 \sqrt{.032 \mathrm{I2}}= \pm 0.074 \tag{7}
\end{equation*}
$$

And the probable error of y

$$
\begin{equation*}
\pm 0.412 \sqrt{0.0034}= \pm 0.0016 \mathrm{G} \tag{8}
\end{equation*}
$$

From equations (2), if required, is easily oltained the weight of the determination of the length of $[a \cdot b]$ at any given temperature.

2

The small space [b.c] of $3 \cdot 38$ inches was conpared with the corresponding space on OF, [u.e], on August 4th, 5 th, and 6th.

The individual or single comparisons, generally three in number at each visit, and recorded as at page 97, are shown in the following Table.

Comparisons of 3.38 inch Space on Ordnance Mrtre and Ordnance Foot.

Duto.	Temp.	[b*c]	$[\mu \cdot c]$	Difference in Micrometer livisions.	$[\mu \cdot c]-[b \cdot c]$
1864.					
Aug. 4	$65^{\circ} 40$	$96 \cdot 33 h+89 \cdot 50 k$	$8.77 h+10.80 h$	$87 \cdot 56 h+78 \cdot 70 k$	$132 \cdot 40$
" "	$65 \cdot 1$	$92 \cdot 13 h+93 \cdot 43 h$	$8.77 h+10.40 k$	$83.36 k+83.03 k$	132.52
5	64.70	$92 \cdot 33 h+93 \cdot 53 k$	$9 \cdot 37 h+9.33 h$	$82.96 h+84.20 h$	133.14
" ,	$6+70$	$96.20 h+89.73 k$	$10.03 h+9.30 h$	$86.17 h+80.43 k$	132.68
, "	$6+70$	91.97 $k+93.17 k$	$11.47 h+7.50 k$	$80.50 h+85.67 h$	132.35
" "	65.00	$90 \cdot 57 h+9+43 k$	$9.23 h+8.73 k$	$8 \mathrm{I} \cdot 34 h+85 \cdot 70 h$	I 33.05
" "	65.00	$88.53 h+97 \cdot 20 k$	$9.20 h+8.90 h$	$79 \cdot 33 h+88 \cdot 30 h$	1 33.52
" "	65.00	$90.63 h+95.47 k$	$1 \mathrm{I} .73 h+6.50 k$	$78.90 h+88.97 h$	133.72
" "	65.20	$93.40 h+92.77 k$	$9.93 h+9.17 k$	$83.47 k+83.60 k$	133.06
" "	$65 \cdot 20$	$92 \cdot 93 h+92.87 h$	$10.63 h+7.30 h$	$82.30 h+85.57^{k}$	133.71
" "	65.20	$94.00 h+90.70 h$	${ }^{8.37} k+10.63 k$	$85.63 h+80.07 k$	131.96
\cdots	$65 \cdot 45$	$95.33 h+89.53 h$	$10.33 h+7.97 k$	$85.00 h+81.56 h$	132.65
n "	65.45	$9+03 h+91.80 k$	$10.67 h+7.53 k$	$83 \cdot 36 h+8+27 h$	133.51
" \quad,	$65 \cdot+5$	$94.47 k+91 .+0 k$	$11.07 h+7.87 h$	$83.40 h+83.53 k$	$132 \cdot 95$
6	65.66	$93.03 k+93.10 k$	$10.77 h+7.40 k$	$82.26 k+85.70 k$	133.78
" \quad "	65.66	$90.73 h+93.77 k$	$9 \cdot 90 h+8.57 h$	$80.83 h+85.20 h$	$132 \cdot 24$
" "	65.66	$91.67 h+92.97 k$	$10.03 h+8.33 h$	$8 \mathrm{I} \cdot 64 h+8{ }_{4} \cdot 64 h$	$132.4+$
" \quad	65.85	$93.13 h+92.87 h$	$8.00 h+9.93 h$	$85 \cdot 13 k+82 \cdot 9+k$	133.86
" "	65.85	$91 \cdot 77 h+93 \cdot 80 k$	$7.53 h+10.23 h$	$8+.24 h+83.57 h$	133.65
" "	65.85		$9.63 h+7.80 h$	$82.47 k+85.37 h$	133.68

From this we find for $[b \cdot c]$ the value

$$
\begin{equation*}
[\mu e]-133.04 \tag{9}
\end{equation*}
$$

at the mean temperature $65^{\circ} \cdot 32$. The sum of the squares of the errors, or differences of the individual results from the mean, is $7 \cdot 001 \mathrm{I}$, consequently the probable error of a single comparison is

$$
\begin{equation*}
\pm .674 \sqrt{\frac{7.00}{20-1}}= \pm 0.409 \tag{10}
\end{equation*}
$$

and the probable error of the mean of 20 comparisons

$$
\begin{equation*}
\pm \frac{0.409}{\sqrt{20}}= \pm 0.091 \tag{II}
\end{equation*}
$$

We have next to reduce this to the temperature of 62°. By equations (7) and (8), page 77 , it appears that

$$
\mathbf{F}=\frac{1}{3} \mathbf{Y}_{55}-0.36+0.0066(t-62)
$$

with the probable error

$$
\begin{equation*}
\pm\left\{\cdot 011715+.001256(t-62)+.0000488(t-62)^{2}\right\}^{t} \tag{I2}
\end{equation*}
$$

consequently

$$
\frac{.33^{8}}{1200} \mathbf{F}=\frac{338}{3600} \mathbf{Y}_{85}-0 \cdot 10+.0019(t-62)
$$

with the probable error of

$$
\begin{equation*}
\pm\left\{.000929+.000100(t-62)+.0000039(t-62)^{2}\right\} \tag{13}
\end{equation*}
$$

Also by equation (47), page 7 I , we have

$$
[\mu \cdot e]=\frac{338}{1200} F-1 \cdot 24 \pm 0.006
$$

Hence

$$
\begin{equation*}
[\mu \cdot e]=\frac{33^{8}}{3600} \mathbf{Y}_{\mathrm{Es}}-1 \cdot 34+0.0019(t-62) \tag{14}
\end{equation*}
$$

with a probable error of

$$
\begin{equation*}
\left.\pm\left\{.010533+.000100(t-62)+.0000039(t-62)^{2}\right\}\right\} \tag{15}
\end{equation*}
$$

Let now the small space on $\mathbf{O M}$ at 62° be

$$
\begin{equation*}
[b \cdot c]=\frac{338}{3600} \mathrm{Y}_{05}+u \tag{16}
\end{equation*}
$$

then at the temperature t its length will be

$$
\begin{equation*}
[b \cdot c]=\frac{33^{8}}{3600} \mathbf{Y}_{65}+u+\frac{33^{8}}{3600} y(t-62) \tag{17}
\end{equation*}
$$

where y is the excess of the expansion, for i° Fahrenheit, of one yard of OM ubove that of $\mathbf{Y}_{\text {bs }}$

Now taking the difference of equations (14) and (17), this space exceeds [$\mu \cdot e$] by

$$
\begin{equation*}
u+1 \cdot 34-0.0019(t-62)+\frac{338}{3600} y(t-62) \tag{18}
\end{equation*}
$$

and the observed value of this quantity for $t=65^{\circ} \cdot 3^{2}$ we liave just found to be

$$
-133.04 \pm 0.091
$$

Consequently

$$
\begin{equation*}
u=-133.04-1.34+.0019(t-62)-\frac{338}{3600} y(t-62) \tag{19}
\end{equation*}
$$

Here we must put $t-62=3.32$ and $y=-0.4109$ which gives

$$
\begin{equation*}
u=-134 \cdot 25 \tag{20}
\end{equation*}
$$

The probable error of the expression for u we see to be made up of three independent components: first, the probable error of the quantity 133.04 ; second, the probable error of the quantity - $1.34+.0019(t-62)$; third, the probable error of a fraction of y, namely,

$$
\frac{338}{3600} \times 3.32 y=0.3117 y
$$

Now we have the probable error of y by equation (8) equal to ± 0.0076. So that the probable error of the above fraction of y becomes insignificant.

We have therefore for u the probable error

$$
\begin{gathered}
\pm\{.00828 \mathrm{I}+.010533+.000332+.000043\} \\
= \pm 0.139
\end{gathered}
$$

3.

The length of $O M$ is composed of the two parts whose lengths we have just determined, namely, the yard whose value at 62° is, by (4),

$$
\mathbf{Y}_{55}+x=\mathbf{Y}_{55}-1 \cdot 20
$$

and the small space whose length at 62° is, by (20),

$$
\frac{338}{3600} \mathbf{Y}_{55}+u=\frac{338}{3600} \mathbf{Y}-134.25
$$

The sum of which is

$$
\begin{equation*}
\frac{393^{8}}{3600} \mathbf{Y}_{55}+u+x=\frac{3938}{3600} \mathbf{Y}_{55}-135 \cdot 45 \tag{2I}
\end{equation*}
$$

In order to obtain the probable error of this result it is necessary to remember that u involves y, which is determined from the same observations as x. The quantity $u+x$ is made up as follows:

$$
\{-133.04\}+\{-1 \cdot 34+.0019 \times 3.32\}+\{x-\cdot 3117 y\}
$$

The prooable error of the directly observed quantity within the first bracket is, by equation (11), $\pm \cdot 091$; that within the second bracket is, by equation (15), $\pm \cdot 104$; that within the third bracket is, by equations (6) and (2),

$$
\pm 0.412\left\{.032117+.003100(.3 \mathrm{I})+.000338(.3 \mathrm{I})^{2}\right\}^{\frac{1}{2}}= \pm .075
$$

which, however, does not differ sensibly from the probable error of x alone. Hence for the probable error of $u+x$ we have

$$
\begin{equation*}
\pm\left\{(.091)^{2}+(\cdot 104)^{2}+(.075)^{2}\right\}^{\frac{1}{2}}= \pm 0.158 \tag{22}
\end{equation*}
$$

We have then finally, from equations (21) (22), for the length of the Ordnance Metre at 62° Fahrenheit

$$
\mathbf{O} \mathbf{M}=(1 \cdot 09375344 \pm \cdot 00000016) \mathbf{Y}_{50}
$$

\mathbf{X}.
 ON TIIE MODE OF SUPPORT OF THE TOISES, Nos. 10, 11.

We have described each of these as a flat bar of steel 1.70 inches in breadth, and 0.39 inch thick. The extremities are turned into cylinders having one and the same axis, namely, the line passing through the centres of all transverse sections of the bar. The length of each cylinder is 0.6 of an inch, and its diameter coincides with the thickness of the bar. Omitting from further consideration these cylinders, the length of the bar with section as given above is $75 \cdot 5$ inches.

The bar is supported in its case on four points or rather convex metallic surfaces at equal distances of 21.5 inches apart. 'These surfaces are of course supposed to have a common taugent plane: if one of the surfaces was above or below the common tangent plane of the other three, the bar would be improperly supported. It appears, as far as can be ascertained, that in all comparisons it has been supported on four rollers having contact with the bar at the same points as when it lies in its case. It is very necessary that these rollers should be in one and the same horizontal plane, and as there may be some uncertainty in attaining to this perfect adjustment, the following investigation was undertaken to ascertain the effect of any want of perfectness in the alignment. We shall also ascertain whether it be allowable to support the bar at the same points as it has been always supported, but upon lever rollers instead of upon rigid supports. In this case the four pressures would be equal, but the surfaces of the rollers not in one plane.

We shall have the more confidence in the results of the investigation inasmuch as we have found in the preceding section that the observed phenomena of flexure are in all but perfect accordance with computed results from theory.

1.

Let us suppose the bar to be resting, with unequal pressures, upon four supporting points or rollers, of which the two outer are in a horizontal straight line, but the two inner not in that line. It will be easily seen that by this we do not limit the generality of the results. In the figure let $P \mathrm{Q} \mathrm{P}^{\prime} \mathrm{Q}^{\prime}$ be the four points of support, the distances apart $\mathrm{Q}^{\prime} \mathrm{P}^{\prime}=\mathrm{P}^{\prime} \mathrm{P}=\mathrm{PQ}=b$; the whole

length of the bar $=a$. Also let

$$
\begin{array}{rlrl}
\text { Pressure at } & \mathbf{P}=\mathbf{P} \\
" & \mathbf{Q}=\mathbf{Q} \\
" & \mathbf{P}^{\prime}=\mathbf{P}^{\prime} \\
" & \mathbf{Q}^{\prime}=\mathbf{Q}^{\prime}
\end{array}
$$

Then if w be the weight of the bar

$$
\begin{equation*}
\mathrm{P}+\mathrm{Q}+\mathrm{P}^{\prime}+\mathrm{Q}^{\prime}=w \tag{I}
\end{equation*}
$$

We assume further that the bar rests symmetrically upon the rollers, that is, that the centre of the bar is midway between the rollers $\mathrm{P}^{\prime} \mathrm{P}^{\prime}$. Taking moments about the centre of the bar we get the equation

$$
\begin{equation*}
\mathbf{P}+3 \mathbf{Q}=\mathbf{P}^{\prime}+3 \mathbf{Q}^{\prime} \tag{2}
\end{equation*}
$$

These two equations give

$$
\begin{align*}
& \mathrm{P}=\frac{w}{2}-2 \mathrm{Q}+\mathrm{Q}^{\prime} \\
& \mathrm{P}^{\prime}=\frac{w}{2}+\mathrm{Q}-2 \mathrm{Q}^{\prime} \tag{3}
\end{align*}
$$

Now let

$$
\begin{align*}
\mathrm{Q} & =\frac{\lambda}{2} w \\
\mathrm{Q}^{\prime} & =\frac{\lambda^{\prime}}{2} w \tag{4}\\
\text { then, } \mathrm{P} & =\frac{w}{2}\left(\mathrm{I}-2 \lambda+\lambda^{\prime}\right) \\
\mathrm{P}^{\prime} & =\frac{w}{2}\left(1+\lambda-2 \lambda^{\prime}\right) \tag{5}
\end{align*}
$$

The points $\mathrm{Q} \mathrm{Q}^{\prime}$ being in a horizontal line, let the vertical ordinates of $\mathrm{P} \mathrm{P}^{\prime}$ be $\delta \delta^{\prime}$, that is their distances above the horizontal line. Taking $\mathrm{Q} \mathrm{Q}^{\prime}$ for the axis of x
the coordinates of \mathbf{Q} are $x=\frac{3}{2} b \quad, y=0$

$$
\begin{align*}
& " \quad \mathbf{P}, x=\frac{1}{2} b \quad, y=\delta \\
& \mathrm{P}^{\prime},, x=-\frac{1}{2} b, y=\delta^{\prime} \\
& \mathrm{Q}^{\prime},, x=-\frac{3}{2} b, y=0 \tag{6}\\
& \text { centre of bar } x=0 \quad y=\delta_{0} \text { 。 }
\end{align*}
$$

Also let the inclination of the bar to the horizontal line

$$
\begin{align*}
& \text { or, } \frac{d y}{d \cdot x} \text { at centre of bar }=s \\
& \text {, the point } \mathrm{P}=p \\
& \text { " } \quad \mathrm{Q}=q \tag{7}
\end{align*}
$$

Consider now the forces tending to bend the bar at any point between the centre and P. Let the distance of this point from the centre be x : the sum of the moments of the upward reactions of the supports is

$$
\mathrm{P}\left(\frac{b}{2}-x\right)+\mathrm{Q}\left(\frac{3 b}{2}-x\right)
$$

And the sum of the moments of the parallel forces constituting the weight of that portion of the bar which is to the right of the point we are considering is

$$
-\frac{\omega}{2 a}\left(\frac{a}{2}-x\right)^{2}
$$

The sum of the moments of the elastic forces brought into action at the section of the bar in question is by equation (4), page 22,

$$
\frac{w a k^{2}}{12 \alpha \varphi}
$$

Consequently

$$
\begin{equation*}
\frac{w a k^{2}}{12 \alpha \varrho}=(\mathrm{P}+3 \mathrm{Q}) \frac{b}{2}-(\mathrm{P}+\mathrm{Q}) x-\frac{w a}{8}+\frac{w}{2} x-\frac{w}{2 a} x^{2} \tag{8}
\end{equation*}
$$

Now by (4) and (5)

$$
\begin{aligned}
& P+3 Q=\frac{w}{2}\left(1+\lambda+\lambda^{\prime}\right) \\
& P+Q=\frac{w}{2}\left(1-\lambda+\lambda^{\prime}\right)
\end{aligned}
$$

Consequently by substitution (8) becomes

$$
\begin{equation*}
\frac{a k^{2}}{6 a \rho}=\left(1+\lambda+\lambda^{\prime}\right) \frac{b}{2}-\left(1-\lambda+\lambda^{\prime}\right) x-\frac{u}{4}+x-\frac{x^{2}}{a} \tag{9}
\end{equation*}
$$

or if as before $\frac{a k^{2}}{6 \alpha}=\frac{1}{\mu}$

$$
\begin{equation*}
\frac{\mathbf{I}}{\mu} \cdot \frac{d^{2} y}{d x^{2}}=\left(1+\lambda+\lambda^{\prime}\right) \frac{b}{2}+\left(\lambda-\lambda^{\prime}\right) x-\frac{a}{4}-\frac{x^{2}}{a} \tag{10}
\end{equation*}
$$

Integrating this equation

$$
\frac{\mathrm{I}}{\mu} \frac{d y}{d x}=\mathrm{C}_{1}+\frac{b}{2}\left(\mathrm{I}+\lambda+\lambda^{\prime}\right) x+\frac{\lambda-\lambda^{\prime}}{2} x^{2}-\frac{a}{4} x-\frac{x^{9}}{3 a}
$$

Making $x=0$

$$
\begin{align*}
& \frac{\mathrm{I}}{\mu} s=\mathrm{C}_{1} \\
\therefore & \frac{\mathrm{I}}{\mu} \frac{d y}{d x}=\frac{s}{\mu}+\left\{\frac{b}{2}\left(\mathrm{I}+\lambda+\lambda^{\prime}\right)-\frac{a}{4}\right\} x+\frac{\lambda-\lambda^{\prime}}{2} x^{2}-\frac{x^{3}}{3 a} \tag{II}
\end{align*}
$$

Again, in this equation make $x=\frac{b}{2}$, and we have

$$
\begin{equation*}
\frac{p}{\mu}=\frac{b^{2}}{8}\left(2+3 \lambda+\lambda^{\prime}\right)-\frac{a b}{8}-\frac{b^{3}}{2+^{\prime l}}+\frac{s}{\mu} \tag{12}
\end{equation*}
$$

Integrating a second time equation (II)

$$
\frac{y}{\mu}=\mathrm{C}_{2}+\frac{s}{\mu} x+\left\{\frac{b}{2}\left(\mathrm{I}+\lambda+\lambda^{\prime}\right)-\frac{a}{4}\right\} \frac{x^{2}}{2}+\frac{\lambda-\lambda^{\prime}}{6} x^{3}-\frac{x^{6}}{\mathrm{I} 2 a}
$$

When $x=0, y=\delta_{0}$ consequently

$$
\begin{equation*}
\frac{y}{\mu}=\frac{\delta_{o}}{\mu}+\frac{s x}{\mu}+\left\{\frac{b}{2}\left(1+\lambda+\lambda^{\prime}\right)-\frac{a}{4}\right\} \frac{x^{2}}{2}+\frac{\lambda-\lambda^{\prime}}{6} x^{3}-\frac{x^{4}}{12 a} \tag{13}
\end{equation*}
$$

This is the equation of the curve of the neutral axis from P^{\prime} to P . If we make $x=\frac{b}{2}$ and therefore $y=\delta$

$$
\begin{equation*}
\frac{\partial}{\mu}=\frac{\partial_{0}}{\mu}+\frac{s b}{2 \mu}+\frac{b^{3}}{4^{8}}\left(3+4 \lambda+2 \lambda^{\prime}\right)-\frac{a b^{2}}{3^{2}}-\frac{b^{4}}{12 \cdot 16!\iota} \tag{14}
\end{equation*}
$$

Again ; take a point between P and Q whose abscissa is x : the sum of the moments of the forces tending to turn the right-hand part of the bar about this point is

$$
\mathrm{Q}\left({ }_{2}^{3} b-x\right)-\frac{w}{2 a}\left(\frac{a}{2}-x\right)^{2}
$$

consequently for the equation of the curve

$$
\begin{equation*}
\frac{\mathrm{I}}{\mu} \frac{d^{2} y}{d x^{4}}=\lambda\left(\frac{3}{2} b-x\right)-\frac{a}{4}+x-\frac{x^{2}}{a} \tag{15}
\end{equation*}
$$

Integrating this

$$
\frac{\mathrm{I}}{\mu} \frac{d y}{d x}=\mathrm{C}_{3}+\left(\frac{3}{2} b \lambda-\frac{a}{4}\right) x+(\mathrm{I}-\lambda) \frac{x^{2}}{\frac{2}{2}}-\frac{x^{3}}{3^{a}}
$$

making $x=\frac{b}{2}$

$$
\frac{p}{\mu}=\mathrm{C}_{3}+\frac{5}{8} b^{2} \lambda-\frac{a b}{8}+\frac{b^{2}}{8}-\frac{b^{3}}{24^{a}}
$$

subtracting equation (12) from this we get

$$
0=C_{3}-\frac{b^{2}}{8}\left(1-2 \lambda+\lambda^{\prime}\right)-\frac{s}{\mu}
$$

and therefore

$$
\begin{equation*}
\frac{\mathrm{I}}{\mu} \frac{d y}{d x}=\frac{b^{2}}{8}\left(\mathrm{I}-2 \lambda+\lambda^{\prime}\right)+\frac{s}{\mu}+\left(\frac{3}{2} b \lambda-\frac{a}{4}\right) x+\frac{\mathrm{I}-\lambda}{2} x^{2}-\frac{x^{3}}{3 a} \tag{16}
\end{equation*}
$$

Here let x again $=\frac{3}{2} b$, and we get

$$
\begin{equation*}
\frac{q}{\mu}=\frac{s}{\mu}+\frac{b^{2}}{8}\left(10+7 \lambda+\lambda^{\prime}\right)-\frac{3 a b}{8}-\frac{9 b^{3}}{8 a} \tag{17}
\end{equation*}
$$

Integrating once more equation (16)

$$
\begin{equation*}
\frac{y}{\mu}=\mathrm{C}_{4}+\frac{s x}{\mu}+\frac{b^{2}}{8}\left(\mathrm{1}-2 \lambda+\lambda^{\prime}\right) x+\left(\frac{3}{4} b \lambda-\frac{a}{8}\right) x^{2}+\frac{\mathrm{1}-\lambda}{6} x^{3}-\frac{x^{4}}{12 a} \tag{18}
\end{equation*}
$$

which is the equation of the curve of the neutral axis from P to Q : but we have to determine the constant C_{4}.

If in this last equation $x \doteq \frac{b}{2}$ then $y=\hat{a}$, and we get after some reduction

$$
\frac{\partial}{\mu}=\frac{s b}{2 \mu}+\frac{b^{3}}{4^{8}}\left(4+2 \lambda+3 \lambda^{\prime}\right)-\frac{a b^{2}}{3^{2}}-\frac{b^{4}}{12 \cdot 16 a}+\mathrm{C}_{4}
$$

subtracting from this equation (14) the result is

$$
o=-\frac{\delta_{0}}{\mu}+\frac{b^{3}}{48}\left(1-2 \lambda+\lambda^{\prime}\right)+C_{4}
$$

and substituting this in (18) we have

$$
\begin{equation*}
\frac{y}{\mu}=\frac{\lambda_{\mu}}{\mu}-\frac{b^{3}}{48}\left(1-2 \lambda+\lambda^{\prime}\right)+\frac{s x}{\mu}+\frac{b^{2}}{8}\left(\mathrm{I}-2 \lambda+\lambda^{\prime}\right) x+\left(\frac{3}{4} b \lambda-\frac{a}{8}\right) x^{2}+\frac{1-\lambda}{6} x^{3}-\frac{x^{4}}{12 a} \tag{19}
\end{equation*}
$$

Now when $x=\frac{3}{2} b, y=0$, consequently after a little reduction

$$
\begin{equation*}
0=\frac{\grave{o}_{o}}{\mu}+\frac{3 b s}{2 \mu}+\frac{b^{3}}{48}\left(35+38 \lambda+8 \lambda^{\prime}\right)-\frac{9 a b^{2}}{32}-\frac{27 b^{4}}{64 a} \tag{20}
\end{equation*}
$$

We arrive finally at the points to the right of Q . Here the equation of moments is

$$
\begin{gather*}
\frac{\mathrm{I}}{\mu} \frac{d^{2} y}{d \cdot x^{2}}=-\frac{a}{4}+x-\frac{x^{s}}{a} \tag{21}\\
\frac{\mathrm{I}}{\mu} \frac{d y}{d x}=\mathrm{C}_{s}-\frac{a}{4} x+\frac{x^{2}}{2}-\frac{x^{3}}{3 a}
\end{gather*}
$$

making $x=\frac{3}{2} b$

$$
\frac{q}{\mu}=\mathrm{C}_{\mathrm{s}}-\frac{3 a b}{8}+\frac{9 b^{3}}{8}-\frac{9 b^{3}}{8 a}
$$

Subtract from this equation (17) and we get

$$
\circ=\mathrm{C}_{5}-\frac{s}{\mu}-\frac{b^{2}}{8}\left(1+7 \lambda+\lambda^{\prime}\right)
$$

and substituting this value of C_{5}

$$
\begin{equation*}
\frac{1}{\mu} \frac{d y}{d x}=\frac{s}{\mu}+\frac{b^{2}}{8}\left(1+7 \lambda+\lambda^{\prime}\right)-\frac{a}{4} x+\frac{x^{2}}{2}-\frac{x^{3}}{3 a} \tag{22}
\end{equation*}
$$

Integrating this equation

$$
\frac{y}{\mu}=\mathrm{C}_{6}+\frac{s x}{\mu}+\frac{b^{2}}{8}\left(1+7^{\lambda}+\lambda^{\prime}\right) x-\frac{a x^{2}}{8}+\frac{x^{3}}{6}-\frac{x^{4}}{12 a}
$$

Make $x=\frac{3}{2} b$ and we have since here $y=0$

$$
\circ=\mathrm{C}_{0}+\frac{3 s b}{2 \mu}+\frac{b^{3}}{16}\left(3+21 \lambda+3 \lambda^{\prime}\right)-\frac{9 a b^{2}}{32}+\frac{9 b^{3}}{16}-\frac{27 b^{4}}{64 a}
$$

From this subtract equation (20) and we get

$$
0=\mathrm{C}_{\mathrm{B}}+\frac{b^{3}}{4^{8}}\left(1+25 \lambda+\lambda^{\prime}\right)-\frac{\delta_{0}}{\mu}
$$

Substituting this value of C_{0} we get finally for the equation of the neutral axis to the right of \mathbf{Q},

$$
\begin{equation*}
\frac{y}{\mu}=\frac{\delta_{o}}{\mu}-\frac{b^{3}}{4^{8}}\left(1+25 \lambda+\lambda^{\prime}\right)+\frac{s x}{\mu}+\frac{b^{3}}{8}\left(1+7^{\lambda}+\lambda^{\prime}\right) \cdot x-\frac{a x^{2}}{8}+\frac{x^{3}}{6}-\frac{x^{4}}{12 a} \tag{23}
\end{equation*}
$$

We now for the sake of clearness bring together the equations of the three parts of the bar as follows:

$$
\begin{equation*}
\text { PP: } \frac{y}{\mu}=\frac{\partial_{O}}{\mu}+\frac{s x}{\mu}+\left\{\frac{b}{2}\left(1+\lambda+\lambda^{\prime}\right)-\frac{a}{4}\right\} \frac{x^{2}}{2}+\frac{\lambda-\lambda^{\prime}}{6} x^{3}-\frac{x^{4}}{12 a} \tag{A}
\end{equation*}
$$

$\mathrm{PQ}: \frac{y}{\mu}=\frac{\delta_{0}}{\mu}-\frac{b^{5}}{48}\left(\mathrm{I}-2 \lambda+\lambda^{\prime}\right)+\frac{s x}{\mu}+\frac{b^{2}}{8}\left(\mathrm{I}-2 \lambda+\lambda^{\prime}\right) x+\left(\frac{3}{4} b \lambda-\frac{a}{8}\right) x^{2}+\frac{1-\lambda}{6} x^{3}-\frac{x^{4}}{12 a}$

$$
\begin{equation*}
\mathrm{Q}-: \frac{y}{\mu}=\frac{\delta_{o}}{\mu}-\frac{b^{3}}{48}\left(\mathrm{I}+25 \lambda+\lambda^{\prime}\right)+\frac{s x}{\mu}+\frac{b^{2}}{8}\left(1+7 \lambda+\lambda^{\prime}\right) x-\frac{a x^{2}}{8}+\frac{x^{4}}{6}-\frac{x^{4}}{12 a} \tag{B}
\end{equation*}
$$

We have now to find the eight quantities $\delta_{o} s p q p^{\prime} q^{\prime} \lambda \lambda^{\prime}$ in terms of $\delta \delta$. For this purpose we shall make use of equations (12), (17), (14), (20), and those corresponding
to them for the left-hand part of the bar. In order to obtain these it is necessary in each of the above to alter λ into $\lambda^{\prime}, \lambda^{\prime}$ into λ, and s into $-s$. Thus we have the following :-

$$
\begin{align*}
& \frac{p}{\mu}=\frac{s}{\mu}+\frac{b^{3}}{8}\left(2+3 \lambda+\lambda^{\prime}\right)-\frac{a b}{8}-\frac{b^{3}}{24 a} \tag{24}\\
& \frac{p^{\prime}}{\mu}=-\frac{s}{\mu}+\frac{b^{2}}{8}\left(2+3 \lambda^{\prime}+\lambda\right)-\frac{a b}{8}-\frac{b^{3}}{24 a} \tag{25}\\
& \frac{q}{\mu}=\frac{s}{\mu}+\frac{b^{3}}{8}\left(10+7 \lambda+\lambda^{\prime}\right)-\frac{3 a b}{8}-\frac{9 b^{3}}{8 a} \tag{26}\\
& \frac{q^{\prime}}{\mu}=-\frac{s}{\mu}+\frac{b^{2}}{8}\left(10+7 \lambda^{\prime}+\lambda\right)-\frac{3 a b}{8}-\frac{9 b^{3}}{8 a} \tag{27}\\
& \frac{\delta}{\mu}=\frac{\delta_{o}}{\mu}+\frac{s b}{2 \mu}+\frac{b^{3}}{4^{8}}\left(3+4 \lambda+2 \lambda^{\prime}\right)-\frac{a b^{2}}{3^{2}}-\frac{b^{4}}{12 \cdot 16 a} \tag{28}\\
& \frac{\delta^{\prime}}{\mu}=\frac{\delta_{0}}{\mu}-\frac{s b}{2 \mu}+\frac{b^{3}}{48}\left(3+4 \lambda^{\prime}+2 \lambda\right)-\frac{a b^{3}}{3^{2}}-\frac{b^{4}}{12 \cdot 16 a} \tag{29}\\
& O=\frac{\delta_{0}}{\mu}+\frac{3 b s}{2 \mu}+\frac{b^{3}}{48}\left(35+38 \lambda+8 \lambda^{\prime}\right)-\frac{9 a b^{2}}{3^{2}}-\frac{27 b^{4}}{64 a} \tag{30}\\
& \circ=\frac{\delta_{0}}{\mu}-\frac{3 b s}{2 \mu}+\frac{b^{3}}{48}\left(35+38 \lambda^{\prime}+8 \lambda\right)-\frac{9 a b^{2}}{3^{2}}-\frac{27 b^{4}}{64 a} \tag{3I}
\end{align*}
$$

From the last four equations, performing the operations (28) $-\frac{2}{3}$ (30) $-\frac{1}{3}$ (3I) and (29) $-\frac{1}{3}$ (30) $-\frac{2}{3}$ (31) we get-

$$
\begin{align*}
& \frac{\partial}{\mu}=\frac{b^{3}}{6}\left(-4-3 \lambda-2 \lambda^{\prime}\right)+\frac{a b^{2}}{4}+\frac{5}{1^{2}} \frac{b^{4}}{a} \tag{32}\\
& \frac{\delta^{\prime}}{\mu}=\frac{b^{3}}{6}\left(-4-3 \lambda^{\prime}-2 \lambda\right)+\frac{a b^{2}}{4}+\frac{b^{\frac{3}{2}}}{b^{4}} \tag{33}
\end{align*}
$$

and from these-

$$
\begin{align*}
& \lambda=\frac{3}{10} \frac{a}{b}+\frac{5^{5} 0}{10} \frac{b}{a}-\frac{8}{10}+\frac{2}{5} \frac{2 \partial^{\prime}-3^{\lambda}}{\mu b^{3}} \tag{34}\\
& \lambda^{\prime}=\frac{3}{10} \frac{a}{b}+\frac{5}{10} \frac{b}{a}-\frac{8}{10}+\frac{9}{5} \frac{2 \delta-3^{\delta}}{\mu b^{3}} \tag{35}
\end{align*}
$$

Again, from $\frac{1}{2}(30)+\frac{1}{2}(31)$, with $(34)+(35)$

$$
\begin{equation*}
\frac{\delta_{0}}{\mu}=\frac{b^{3}}{16}\left(\frac{s}{5}-\frac{1}{116} \frac{a}{b}-\frac{11}{12} \frac{b}{u}\right)+\frac{23}{\frac{2}{3}} \frac{\partial+i^{\prime}}{\mu} \tag{36}
\end{equation*}
$$

The difference of (30) and (31) gives

$$
\begin{equation*}
s=\frac{5}{4} \cdot \frac{\partial-\partial^{\prime}}{6} \tag{37}
\end{equation*}
$$

We can now easily obtain $p p^{\prime} q q^{\prime}$ in terms of $s \delta^{\prime}$, but as they are not required for our purpose, we shall write down now the equations of the curves into which the right-hand part of the bar is bent in terms of $\bar{\partial} \partial^{\prime}$. The equations (A) (B) (C) by substituting the values of $\lambda \lambda^{\prime} \delta_{0} s$ become as follows:

1st, the equation of the part P P^{\prime} : 一

$$
\begin{align*}
& +\left\{\frac{b}{40}\left(-6+\frac{a}{b}+10 \frac{b}{a}\right)-\frac{3}{10} \frac{\hat{0}+\tilde{\delta}}{\mu b^{2}}\right\} x^{2}-\frac{\delta-\tilde{x}}{\mu b^{8}} x^{3}-\frac{x^{4}}{12 a}
\end{align*}
$$

2 d , the equation of P Q :

$$
\begin{align*}
& \frac{y}{\mu}=-{ }_{i^{\frac{3}{4}} \frac{b^{4}}{a}+\frac{13}{40} \frac{\delta+2 \grave{b}^{\prime}}{\mu}+\left\{\frac{b^{2}}{8 o}\left(18-3 \frac{a}{b}-5 \frac{a}{b}\right)+\frac{49 \grave{o}-46 \grave{o}}{20 \mu b}\right\} x} \\
& +\left\{\frac{b}{40}\left(-24+4 \frac{a}{b}+15 \frac{b}{a}\right)+\frac{9}{10}=\frac{3^{\grave{j}}+2 i^{i}}{\mu b^{2}}\right\} x^{2} \\
& +\left\{\frac{3}{10}-\frac{1}{20} \frac{a}{b}-\frac{1}{12} \frac{b}{a}-\frac{1}{5} \frac{-3^{\delta}+2 \delta^{2}}{\mu b^{3}}\right\} . x^{3}-\frac{x^{3}}{12 a}
\end{align*}
$$

3d, the equation of the part of bar beyond Q :

$$
\begin{gather*}
\frac{y}{\mu}=\frac{3 b^{3}}{16}\left(\frac{12}{5}-\frac{9}{10} \frac{a}{b}-\frac{7}{4} \frac{b}{a}\right)+\frac{3}{5} \cdot \frac{4^{\hat{\gamma}}-\delta^{\prime}}{\mu} \\
+\left\{\frac{b^{2}}{8}\left(-\frac{27}{5}+\frac{12}{5} \frac{a}{b}+4 \frac{b}{a}\right)-\frac{2}{5} \frac{4 \hat{\lambda}-\delta^{\prime}}{\mu b}\right\} x-\frac{a}{8} x^{2}+\frac{1}{8} x^{3}-\frac{x^{4}}{12 a}
\end{gather*}
$$

2.

The last equations written down express completely the form of the bar, and the equations (34) (35) give us the pressures upon the supports when of ore given. For the four pressures we have from equations (4), (5), (34), (35):

$$
\begin{align*}
& \frac{\mathrm{P}}{w}=\frac{18}{20}-\frac{9}{20} \frac{a}{b}-\frac{5}{20} \frac{b}{a}+\frac{\frac{c}{10} 0}{} \cdot \frac{8 \bar{b}-\frac{7 \check{0}}{\mu b^{3}}}{} \tag{38}
\end{align*}
$$

We shall now in these formulæ substitute the values of a, b, and μ, our unit of length being one inch. We shall take for the weight of a cubic foot of cast steel 490 lbs., and the modulus of elasticity $30,000,000$. If h, k be the breadth and depth of the bar, its weight

$$
w=\frac{490}{12^{3}} a h k
$$

This applied as a direct force of compression to the bar would compress it the amount

$$
\frac{w}{30,000,000} \cdot a \cdot \frac{1}{h k}=\frac{49 a^{a}}{3 \cdot(1200)^{3}}=\alpha
$$

Consequently

$$
\frac{\mathrm{I}}{\mu}=\frac{a k^{2}}{6 \alpha}=\frac{k^{2}(\mathrm{I} 200)^{3}}{9^{8} a}
$$

But $k=0 \cdot 39 ; a=75 \cdot 5$;

$$
\begin{gathered}
\therefore \frac{1}{\mu}=\frac{1200}{49} \cdot \frac{(468)^{2}}{151}=35522 \\
\mu=\cdot 000028151
\end{gathered}
$$

Substituting these values in $\left(A^{\prime}\right)\left(B^{\prime}\right)\left(C^{\prime}\right)$, we have the following :-

$$
\begin{gather*}
100 y=-.0192+57.5 \delta+57.5 \delta^{\prime}+\left(58 \cdot 140 \delta-58 \cdot 140 \delta^{\prime}\right) \frac{x}{10} \\
+\left(.0544-6.490 \delta-6.49 \delta^{\prime}\right)\left(\frac{x}{10}\right)^{2}+\left(-10.062 \delta+10.062 \delta^{\prime}\right)\left(\frac{x}{10}\right)^{3} \\
-.031072\left(\frac{x}{10}\right)^{4} \tag{1}
\end{gather*}
$$

$$
\begin{gather*}
100 . y=-.3735+37.5^{\delta}+75 \cdot 0 \delta^{\prime}+\left(.9827+113.95^{\prime}-106.98 \delta^{\prime}\right)\left(\frac{x}{10}\right) \\
+\left(-.8598-58 \cdot 41 \delta+38 \cdot 94 \delta^{\prime}\right)\left(\frac{x}{10}\right)^{2}+\left(.2834+6.037 \delta-4.025^{\prime}\right)\left(\frac{x}{10}\right)^{3} \\
-.031072\left(\frac{x}{10}\right)^{4} \tag{1}
\end{gather*}
$$

$$
100 y=-6.6035+240 i-60 i^{\prime}+\left(6.7781-74.419 i+18.605 i^{\prime}\right)\left(\frac{x}{10}\right)
$$

$$
\begin{equation*}
-2.6568\left(\frac{x}{10}\right)^{2}+.46919\left(\frac{x}{10}\right)^{3}-.031072\left(\frac{x}{10}\right)^{4} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathbf{P}}{\omega}=\cdot 3021+17 \cdot 156 \delta-15 \cdot 012 \delta^{\prime} \tag{42}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{P}^{\prime}}{\omega}=\cdot 3021-15 \cdot 012 \delta+17 \cdot 156 \delta^{\prime} \tag{43}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{Q}}{\omega}=\cdot 1979-6 \cdot 434 \hat{o}+4.289 \hat{o} \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathbf{Q}^{\prime}}{\omega}=\cdot 1979+4.289 \delta-6 \cdot 434 \delta^{\prime} \tag{45}
\end{equation*}
$$

The sum of these last equations being as it should be

$$
\frac{\mathrm{P}}{w}+\frac{\mathrm{P}^{\prime}}{w}+\frac{\mathrm{Q}}{w}+\frac{\mathrm{Q}^{\prime}}{w}=1
$$

3.

In the expressions for the reaction of the supports first given, the symbols $\delta \delta^{\prime}$ represent the height of the inner supports above the line joining the outer supports expressed
in inches. But it will be more conveaient to express these quantities in hundredths of inches, that is, making $\frac{1}{10}$ of an inch the unit. The equations will then stand thus:

$$
\begin{align*}
& \frac{\mathrm{P}}{w}=\cdot 302 \mathrm{I}+.171560-15012 i^{\circ} \tag{46}\\
& \frac{\mathrm{P}^{\prime}}{w}=\cdot 3021-.15012 i+\cdot 17156 \sigma^{\circ} \tag{47}\\
& \frac{Q}{w}=\cdot 1979-.06434 i+.04289 i^{\prime} \tag{8}\\
& \frac{Q^{\prime}}{w}=\cdot 1979+.04289 i-.06434 \text { s }^{\prime} \tag{49}
\end{align*}
$$

Now in order that the bar may be resting on all four rollers it is necessary that none of the quantities $P P^{\prime} Q Q^{\prime}$ should be negative. If for certain values given to δ and δ^{\prime}, one or more of the reactions turned out to be negative, it would show that the bar required to be drawn or pressed down to bring it into contact with all the rollers. The values of $\delta \delta^{\prime}$ are then restricted within certain limits which must be ascertained. We shall proceed in the following manner :

Multiply and divide the equations (46) (47) by $\sqrt{(.17156)^{2}+(\cdot 15012)^{2}}$, and multiply. and divide $(48)(49)$ by $\sqrt{(.06434)^{2}}+(.04289)^{2}$, writing them thus:

$$
\begin{align*}
& \frac{\mathrm{P}}{w}=0.2280\left(1.3252+.7526 \delta-.6585^{\circ}\right) \tag{50}\\
& \frac{\mathrm{P}^{\prime}}{w}=0.2280\left(1.3252-.6585 \%+.7526 \delta^{\prime}\right) \tag{51}\\
& \frac{\mathrm{Q}}{w}=0.0773\left(2.5593-.8321 \%+.5547^{\prime}\right) \tag{52}\\
& \frac{\mathrm{Q}^{\prime}}{w}=0.0773\left(2.5593+.55477^{\circ}-.832 \mathrm{I}^{\prime}\right) \tag{53}
\end{align*}
$$

If $x \cos \beta+y \sin \beta-\alpha$ be the equation of a straight line, α the perpendicular from the origin of co-ordinates on that line, always a positive quantity, β increasing from o to 360°; the perpendicular from a point whose co-ordinates are

$$
x=\delta, y=\grave{o}
$$

upon the line, is, if the point be on the same side of the line with the origiu,

$$
\alpha-\grave{o} \cos \beta-\grave{o}^{\prime} \sin \rho
$$

Now the quantities within the brackets in (50), (51), (52), (53), are of this form, the values of α and β being :-

$$
\begin{array}{ll}
\alpha_{1}=1.325^{2} & \beta_{1}=13^{\circ} 49^{\prime} \\
\alpha_{2}=1.325^{2} & \beta_{2}=311^{\circ} 11^{\prime} \\
\alpha_{3}=2.5593 & \beta_{3}=326^{\circ} 19^{\prime} \\
\alpha_{1}=2.5593 & \beta_{4}=123^{\circ} 41^{\prime} \tag{53}
\end{array}
$$

which determine four straight lines, and these straight lines fix the limits within which $i x$ must be confined in order that the bar may take a bearing on each of the rollers.

In the adjoining figure let $\mathbf{X}^{\prime} \mathbf{X}$ be the axis of $x, Y Y^{\prime}$ that of y intersecting in a right angle at the origin O. Construct the line $h k$ such that the perpendicular let fall upon it from the origin $=1 \cdot 325$, making an angle of $138^{\circ}+9^{\prime}$ with O X. Draw $f l$ at the

same distance from the origin, but the perpendicular making an angle of $31 I^{\circ} \mathrm{II}^{\prime}$ with OX . It will be seen that the point k in which these two lines intersect lies on the line bisecting the angle $\mathrm{X}^{\prime} \mathrm{O} \mathrm{Y}^{\prime}$. Again, construct the line $l m$, having its perpendicular $=\mathbf{2} \cdot 559$, and making an angle of $326^{\circ} 19^{\prime}$ with OX ; finally at the same perpendicular distance from the origin, the line $m h$, the perpendicular making an angle of $123^{\circ} 41^{\prime}$ with O X. The four lines $h k, k l, l m, m h$, it will be seen form a quadrilateral which is symmetrically bisected by the line bisecting the angle X O Y.

Now take any point within the quadrilateral $h k l m$, and let the co-ordinates of that point be $x=\delta, y=i^{\prime}$, and let the perpencliculars on the four lines be $p p^{\prime} q q^{\prime}$, then

$$
\begin{aligned}
& \frac{\mathbf{P}}{w}=.2280 p \\
& \frac{\mathbf{P}^{\prime}}{w}=.2280 p^{\prime} \\
& \frac{\mathbf{Q}}{w}=.0773 q \\
& \frac{\mathbf{Q}^{\prime}}{w}=.0773 q^{\prime}
\end{aligned}
$$

We see now that $\delta \delta^{\prime}$ are so limited that the point they represent must fall within the rectangle $h k l m$; for if we take a point without the rectangle, one or more of the perpendiculars will be negative, and therefore the pressures negative. We proceed to the following deductions: (1) As long as i^{\prime} and z^{\prime} are of the same sign they may be comparatively large quantities, whether the sign be + or - , but larger if both are negative. If they are equal and at the positice maximum, (52) or (53) gives

$$
\begin{aligned}
2.5593-0.27 \% i & =0 \\
\therefore \delta & =9.22
\end{aligned}
$$

that is, .0922 inch. If both be equal and at the negative maximum, (50) or (51) gives

$$
\begin{aligned}
1 \cdot 3252+0.0941 \delta & =0 \\
\therefore \delta & =-14.08
\end{aligned}
$$

which is nearly a seventh of an inch.
In the former case there is no pressure on the supports $Q(Q$, in the latter there is no pressure on P P'.
(2) If the quantities $\delta \delta^{\prime}$ are of opposite signs, then their range is much more limited, they must be such that the poiuts they represent lall within either of the spaces $\mathrm{X}^{\prime} \mathrm{OY}^{\prime}$ or Y OX. If one be $+r^{1}$. and the other $-r^{1}$ ou of an inch, there will be no contact with one or other of $\mathrm{P}^{\prime}, \mathrm{P}^{\prime}$.
(3) Suppose that all the supports being first in a horizontal line (that is, $\delta=0, \delta=0$) the support P^{\prime} is raised until the pressure on P^{\prime} becomes zero, that is, until the bar is about to coase having contact with l^{\prime}; then Or represents the quantity oby which P may be raised. Similarly supposing all the supports to be at first in a straight line, Or will represent the amount ($-\bar{\delta}$) by which I'may be lotered without coming away from the bar. The values in hundredths of an inch are

$$
\mathrm{O} x=2.01, \mathrm{O} x^{\prime}=-1 \cdot 76
$$

$\mathrm{O} y, \mathrm{O} y^{\prime}$ have the same meaning with reference to the support P^{\prime}.
(4) Suppose the bar to be resting ouly on Q^{\prime} and P, having bare contact with P^{\prime} and Q. The values of $\delta \delta$ will be those which correspond to the point l, both positive, namely,

$$
\begin{aligned}
& \delta=4 \cdot 56 \\
& z^{\prime}=2 \cdot 23
\end{aligned}
$$

and the pressure on Q^{\prime} and P : equations (38), (39), (40), (41).

$$
\begin{aligned}
\frac{P}{\omega} & =\frac{3}{4} \\
\frac{Q^{\prime}}{\omega} & =\frac{1}{4}
\end{aligned}
$$

(5) If the supports be truly in line, then we see by equations (42), (43), (44), (45) that

$$
\mathbf{P}=\mathbf{P}^{\prime}: \mathbf{Q}=\mathbf{Q}^{\prime}:: 3: 2
$$

very nearly.
(6) If the pressures on the four rollers be equal, we must have

$$
\delta=\delta^{\prime}=-2 \cdot 43
$$

hundredths of an inch. In this case by equation (A_{t}) we can show, making $x=0$, that

$$
i_{0}=-2.81
$$

If therefore the Prussian bar were supported at the same four points of its length at which it has always been supported, but ou lever rollers instead of rigid supports adjusted into a straight line, the centre of the bar would be deflected. 028 inch below those parts which were in contact with the outer rollers.

From what we have now seen we conclude that if the errors of adjustment $\delta \delta$ of the two centre rollers be confined to small quantities such as $r^{\frac{1}{3} 0}$ of an inch, there will not fail to be contact on all four rollers. If we knew only for certain that neither δ nor δ exceed $\frac{1}{1} \frac{1}{0}$, then we cannot say positively that there will be contact on all the rollers, but the chances are in favour of it.

4.

We shall next ascertain how much the horizontal projection of the bent bar differe from its unbent length. Let the equation of the curve be

$$
\begin{equation*}
y=\mathrm{A}_{0}+\mathrm{A}_{1} x+\mathrm{A}_{2} \frac{x^{2}}{2}+\mathrm{A}_{5} \frac{x^{3}}{3}+\mathrm{A}_{4} \frac{x^{4}}{4} \tag{54}
\end{equation*}
$$

We require to find the difference of the length of this curve from $x=h$ to $x=k$, and its projection on the axis of x between the same limits. The character of the curve being such that $\frac{d y}{d x}$ is a very small quantity, we have

$$
s=\int_{k}^{k}\left(\mathrm{I}+\frac{d, y^{2}}{d x^{2}}\right)^{\frac{1}{2}} d x=k-h+\frac{1}{2} \int_{k}^{k}\left(\frac{d y}{d x}\right)^{2} d x
$$

The difference in question thercfore is

$$
\begin{equation*}
\sigma=\underbrace{d^{k}}_{k}\binom{d y}{d x}^{2} d x \tag{55}
\end{equation*}
$$

differentiativg (54) and squaring.

$$
\begin{aligned}
\left(\frac{d y}{d} \frac{y}{x}\right)^{2}=A_{1}^{2} & +2 A_{1} A_{2} x+\left(A_{2}^{2}+2 A_{1} A_{3}\right) x^{2}+2\left(A_{1} A_{4}+A_{2} A_{3}\right) x^{4} \\
& +\left(2 A_{2} A_{4}+A_{3}^{2}\right) x^{4}+2 A_{3} A_{4} x^{5}+A_{4}^{2} x^{4}
\end{aligned}
$$

Wherefore

$$
\begin{gather*}
\sigma=\mathrm{B}_{1}(k-h)+\mathrm{B}_{2}\left(k^{2}-h^{2}\right)+\mathrm{B}_{\mathrm{i}}\left(k^{3}-l^{3}\right)+\mathrm{B}_{4}\left(k^{4}-l^{4}\right)+\mathrm{B}_{5}\left(k^{5}-h^{5}\right) \\
+\mathrm{B}_{0}\left(k^{6}-h^{0}\right)+\mathrm{B}_{7}\left(k^{7}-h^{7}\right) \tag{56}
\end{gather*}
$$

the values of $B_{1} B_{2} \ldots$ being

$$
\begin{gathered}
\mathrm{B}_{1}=\frac{1}{2} \mathrm{~A}_{1}^{2} ; \quad \mathrm{B}_{2}=\frac{1}{2} A_{1} \mathrm{~A}_{2} \\
\mathrm{~B}_{3}=\frac{1}{6}\left(\mathrm{~A}_{2}{ }^{2}+2 \mathrm{~A}_{1} A_{3}\right) ; \mathrm{B}_{4}=\frac{1}{4}\left(\mathrm{~A}_{1} \mathrm{~A}_{4}+\mathrm{A}_{4} \mathrm{~A}_{3}\right) ; \mathrm{B}_{6}=\frac{1}{10}\left(\mathrm{~A}_{3}^{2}+2 \mathrm{~A}_{2} A_{4}\right) \\
\mathrm{B}_{6}=\frac{1}{6} \mathrm{~A}_{3} \mathrm{~A}_{4} \quad \mathrm{~B}_{7}=\frac{1}{14} \mathrm{~A}_{4}^{2}
\end{gathered}
$$

From the equations $\left(A_{1}\right),\left(B_{1}\right),\left(C_{1}\right)$, page ${ }_{1} 18$, we may, without any further difficulty than some little labour, obtain the values of $\mathrm{B}_{1} \mathrm{~B}_{2} \ldots \ldots \mathrm{~B}_{7}$ for each of the curves. In the
equation of P^{\prime} to obtain σ we shall integrate from $-\frac{1}{2} b$ to $+\frac{1}{2} b$. In the equation of the part $P \mathrm{Q}$ we shall integrate from $\underset{2}{2} b$ to $\frac{3}{3} b$.. l'or the part beyond Q we shall integrate from $\frac{3}{2} b$ to $\frac{1}{2} a$. For the part $\mathrm{P}^{\prime} \mathrm{Q}^{\prime}$ the result obtained for P Q will hold good on δ, x^{\prime} being interchanged; and for the part to the left of Q the result obtained for the part to the right of Q will hold good on is ó being interchanged.

The results obtained for the five different parts are as follows:

$$
\begin{aligned}
& \mathrm{P}^{\prime} \mathbf{P} ;+.000000008-.00000242 \text { i }-.00000242 \pi \\
& +.025116277 i^{2}-.04744185 i i^{\prime}+.02511627 i^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}^{\prime} \mathrm{Q}^{\prime} ;+.000000167+.00002454^{\lambda}{ }^{\lambda}-.00003672 \delta^{\prime} \\
& +.00297677 \hat{j}^{2}-.00893287 \text { in }^{\prime}+.02995612 \delta^{2} \\
& \text { Q....; +.000000026 -.00003971 }{ }^{\text {万 }}+.00000992 \text { i }^{\prime} \\
& +.01522985 i^{2}-.00761493 i i^{\prime}+.00095186 i^{2}
\end{aligned}
$$

Adding together these five quantities we get the quantity σ for the whole bar as follows:

$$
\sigma=.00000039-.0000444\left(\hat{\delta}+\delta^{\prime}\right)+.0744^{2} \delta^{2}-.0805 \delta \delta^{\prime}+.0742 \delta^{\prime 2}
$$

This is the difference between the actual length of the bar and the horizontal projection of the same: $\bar{\delta} \partial^{\prime}$ being expressed in inches. If $\bar{\delta} \delta^{\prime}$ be expressed in hundredths of an inch ;

$$
1000000 \sigma=0.39-0.444(\hat{\delta}+\delta)+7.42 \delta^{2}-8.05 \delta^{\delta} \delta^{\prime}+7.42 \delta^{\prime 2}
$$

To apply this in some particular cases
(1) Let $\delta=0, \delta^{\prime}=\mathrm{I} \cdot \infty$,

$$
\sigma=\cdot 0000074 \text { inch }
$$

The probable error of a single observation (reading) with the micrometers in use is just ± 0.000007 inch.
(2) Let $\delta=\delta=2.0$ then

$$
\sigma=.0000258 \mathrm{incl}
$$

but if $\delta=\delta^{\prime}=-2.0$

$$
\sigma=.0000293 \text { inch }
$$

(3) If the two centre rollers be lowered until the pressures on all four are equal, we have seen that in this case $\delta=\delta^{\prime}=-2 \cdot 43$, and corresponding shortening is

$$
\sigma=\cdot 0000426 \text { inch }
$$

which is equivalent to one and a half micrometer divisions.
We conclude from these results that if the rollers P P' can be adjusted into line with an error not exceeding say the one hundred and filtieth part of an iuch, there need be no fear either of a false bearing or of an alteration of apparent length. If the bar were supported at the same points of contact as at present, but upon lever rollers, its length would differ very sensibly from the truth.

5.

We have seen that in the positions in which the supports of the Prussian Toise are actually placed, the pressures upon the centre supports are half as great again as the pressures on the outer supports. It may be interesting to inquire at what intervals the supports should have been placed so as to sustain equal pressures.

For this purpose in the equations (38), (39), (40), (41), make $o \hat{o}=o^{\prime}=0$: then since $\mathrm{P}=\mathrm{I}^{\nu}=\mathrm{Q}=\mathrm{Q}^{\prime}$ we must have

$$
3 \frac{a}{b}+5 \frac{b}{a}-\mathrm{s} 3=0
$$

Solving this quadratic equation we get

$$
\frac{b}{a}=0.256
$$

Which, a being $=75 \cdot 5$, gives

$$
b=19.33 \text { inches. }
$$

By this arrangement the overhanging extremities of the bar would have been each 8.75 inches instead of, as they are, 5.5 inches.

XI.

DETERMINATION OF TIIE LENGTII OF THE PRUSSIAN TOISE.

1.

The comparisons of the Prussian Toise No. 10 with the Ordnance Toise are divided into six series, as follows :-

Series I. Comparisons on September Ioth, IIth, 12 th, 14 th; ten comparisons.

2.	"	"	18th, 19 th, 21 st, $22 \mathrm{~d}, 23 \mathrm{~d}$; ten comparisons.
3.	"		29th, 3oth, October ist, 2 d ; ten comparisons.
4.	"	October	20th, $21 \mathrm{st}, 22 \mathrm{~d}, 23 \mathrm{~d}$; ten comparisons.
5.	"	January	5 th, 6th, 7 th, 8th, 9th ; filteen comparisons.
6.		May	$12 \mathrm{th}, \mathrm{I} 3$ th, I4th; ten comparisons.

In all 65 comparisons, that is, sixty-five visits to the bars, the readings at one visit being taken and entered precisely in the manuer explained in the comparisons of OT and $\mathbf{Y}_{\mathrm{s},}$. The total number of micrometer readings is $65 \times 36=2340$. If we consider that at each visit three comparisons are made, this would make the total number of comparisons, 195.

The bars were visited generally three times during the day, at hours as far apart as practicable. At the close of each visit the contucts were re-made, that is, the small contact pieces were drawn away from the ends of the Prussian 'Toise and brought up again to contact; thus for crery visit there was a ficsh contact made: the object being the elimination of any constant cror from this source. Also at the close of each visit the bar left under the microscopes (alternately one and the other) was re-adjusted to focus. The space to be measured by each microscope in this operation being about 260 divisions -a large quantity, it was very necessary to guard against any constant error that wight arise from focussing, although, indeed, it would appear from what has been shown at page 63 that very little error is to be feared in measuring such a quantity as 260 divisions. From these precautions it must be pretty clear that the errors arising from errors of contact and errors of focussing are fully brought out in our individual comparisons, and in great measure eliminated in the final result.

With respect to temperature, the first four serics and the last series are at temperatures ranging between $5^{\circ} .33$ and $63^{\circ} .69$; and the fifth series at low temperature between $30^{\circ} .79$ and $34^{\circ} .6 \mathrm{I}$. By this disposition we have ascertained the difference of length very nearly at the normal temperature, and have ascertained very accurately the difference of the expansions of the bars.

In general, the readings of the thermometers at the close of a visit are higher than the readings at the commencement. The reason is obvious,-the lighting of the candles and the warmth of the person of the observer conspiring to raise the temperature. But the actual amount is very small : from an examination of all the readings it appears that the average increase is $0^{\circ} .02$.

After each series of ten comparisons the Prussian Toise was dismounted and placed in its case while other comparisons were made on other bars. 'Thus cach series of ten is entirely independent of the other. Apparently, there can be no crror common to any two, as cill adjustments are completely thrown out and renewed. An important point for consideration is the proper support of the toise. As has been explainel, it rests on four rollers, which are supposed to be in a straight line, that is, their upper surfaces to have a common tangent plane. In order to attain to this, the upper surfaces were brought into line by meane of a long level, mounted on a piece of very carefully planed mahogany about 2 feet long: the value of oue division in this level is $4^{\prime \prime}$. The level is first laid on the left roller and the left centre roller, and, after a minute or two, is read. It is then placed on the two centre rollers and read. Finally, on the right centre roller and the right roller, and read. From these readings it is easy to see which of the centre rollers is too high or too low with respect to the extreme rollers (which are fixed and do not admit of vertical motion). The centre rollers being accordingly elevated or depressed, the level readings in the three positions are again taken. If, as is very probable, one or both of the centre rollers require further adjustment, they are altered and the level read again. This process is continued until the readings of the level in its three positions are very nearly the same, that is, within one or two divisions. The distance of a contiguous pair of rollers is 21.5 inches, consequeutly one division of the level will indicate a vertical displacement of $21.5 \tan 4^{\prime \prime}=\cdot 00042$ inch. In the first series of comparisons the residual readiugs of the level were not recorded. On removing the toise at the close of the second series the rollers were tested, and it was found that the three rollers on the right were sensibly in line, the left roller indicated 5 divisions of the level in error which is about $\frac{1}{\pi}$ of an inch. At the commencement of the third series, after the levelling of the rollers, the residual readings of the level in the three positions were

$$
15 \cdot 0,16 \cdot 0,17 \cdot 5
$$

which indicate very minute vertical displacements of rollers:
At the commencement of the fourth series, after the levelling of the rollers the residual readings were

$$
15 \cdot 5,16 \cdot 5,16 \cdot 5
$$

At the commencement of the fifth

$$
17.017 .018 .3
$$

At the commencement of the sixth

$$
16 \cdot 0 \quad 16 \cdot 7 \quad 17.5
$$

From this it would appear that there is not much to fear from any curvature of the toise. At any rate the error is not the same for any two series.

With respect to the form of the rollers, the intention was that one should be a perfect cylinder with its axis truly horizontal, and the other three barrel-shaped. Thus the contacts of the Prussian Toise would be along its whole breadth on the cylinder roller, but merely in a point on the barrel-shaped rollers, and that point at the centre of the breadth. The cylinder roller to be one of the centre ones. But it was not discovered at first that all the rollers were truly cylinders. This was remedied after the first series. As it would be difficult or impossible to adjust these rollers so that their four axes should be truly parallel, so we must expect that the toise resting on them would be supported on its outer edges, and so subjected to a slight degree of torsion. This circumstance may, perbaps, render the first serics of ten comparisons less unexceptionable than the remainder.

The contact was made at either end of the Prussian Toise, as near as practicable to the centre of the small circular polished disk forming the end of the toise. There is near, but not αt, the centre of each of these disks a small speck, visible with a magnifying glass, probably of rust. In making the contacts care was taken to avoid these spots, still keeping as near as possible to the centre.

The following Table contains the results of these comparisons; each line shows the mean result of one visit. \mathbf{T}_{10} denotes the length of the Prussian Toise, \boldsymbol{T}_{0} that of the Ordnance Toise, σ the space on the contact apparatus.

RESULTS of COMPARISON of PRUSSIAN TOISE with ORDNANCE TOISE.

Date.	$\begin{gathered} \text { Mean } \\ \text { Temp. } \end{gathered}$	Prusian Toise.	Ordaance 'Toise.	Difference in Micrometer Divisions.	$\begin{gathered} \Gamma_{10}-T_{0} \\ +\sigma \end{gathered}$
1863					
Sept. 10	$6{ }^{\circ} \cdot 69$	$-195.74 h+3.67 k$	+199.90 $h+122.96 k$	$+395.6+h+119.29 k$	$409 \cdot 70$
	63.67	-192.11h- $0.91 k$	+190.4\% $h+13^{2} .53 k$	$+382 \cdot 5^{8} h+133 \cdot 4+k$	410.62
11	62.85	-192.73h+ 9.71h	$+194 \cdot 92 h+136 \cdot+4$	$+387.65 h+126.73 k$	409.29
" \quad "	63.02	- $62.98 h-121.11$	$+164 \cdot 3^{8} / 4+165 \cdot+4 h$	$+227 \cdot 36 h+285 \cdot 55 k$	$409 \cdot 4 \mathrm{I}$
12	62.08	- $48.89 h-123.73$	$+17+43 h+168 \cdot 58 / k$	$+223.32 k+292.31 k$	+10.80
" "	$62 \cdot 1$	- $53.27 h-120.51 k$	+ $\mathbf{1 7 9} 9.19 k+162 \cdot 13 k$	$+232 \cdot{ }^{6} 6 k+282 \cdot 6+k$	$410 \cdot 34$
	62.34	- $40.41 \mathrm{l}-127.77 h$	$+216.03 h+130.2{ }^{2} k$	$+25^{6}+4 k+25^{8.01} k$	+09.74
14	61.22	- 50.27 h-103.93h	$+2.2+63 / 2+135.14 k$	$+27+50 k+239.07 k$	+09.31
" "	${ }_{61} 63$	- $5779 h-98.4+$	+ $209.69 .4+148.87 k$	$+267+8 h+2+7 \cdot 31 k$	+09.99
18	${ }_{61} 137$	- $67.92 h-87.26$	+199.12 $k+160 \cdot 17 k$	$+267 \cdot 0+h+2+7 \cdot 33^{h}$	+09.73
18	61.73	$-298.28 h+155.38$	$+199.47 h+176.49 h$	+ $497.75 h+21.11{ }^{\text {c }}$ k	+12.53
19	61.60	$-264.33 h+124.56$	+190.53 $4+186.89 k$	$++54.86 h+62.33 h$	$\underline{+11.33}$
	$62 \cdot 26$	- 81.51h-65.30	+ $172 \cdot 16 h+200.02 h$	$+253.67 h+265.32 k$	413.38
21	${ }_{61}{ }^{6} 59$	- 81.04 h - $5^{8.39}$	+ $185.79 h+192.69 h$	$+266.83 h+251.08 k$	412.47
	61.67	- $70.15 \mathrm{~h}-71.17$	+191.13h+185.09 k	+261.29 $h+256 \cdot 26 h$	21
	61.96	- 92.91h- 51.8 I		$+268.69 / 2+249 \cdot 24 h$	412.49
22	$60.9+$	- $84.60 h-47.54$	+ $185.72{ }^{8} h+198 \cdot 32 k$	$+270.32 h+2+5.86 h$	411.09
	61.01	- 90.69 $\mathrm{h}-42.52$	$+183 \cdot 96 h+200 \cdot 43^{k}$	$+274.65 h+2+2.95 k$	- 1
	61.01	- $74.40 \mathrm{~h}-59.18$	+192.43 4 +192 514	$+266.83 h+251.69 k$. 96
, 23	$60 \cdot 30$	- $69.69 \mathrm{~h}-5^{8.08}$	+192.90h+197.18k	+262.54 $k+2.55 .26 k$	
29	59.18	- $136.14 h-56.63 h$	+ $94.32 h+228.67 k$	$+230 \cdot+6 h+285.30 h$	
	59.14	-154.98 $h-36.71$	+ $115.57 h+209 \cdot{ }^{2} k$	$+270 \cdot 55 h+24^{6 \cdot 13} k$	8
	59.07	-168.82h- $20.20 k$	$+80.68 h+247.86 k$	$+2+9.50 h+268.06 k$	5
	$58 \cdot 42$	-144.61 1 - 39.22	+ $139.194+193.42 h$	+283.80 $k+232 \cdot 6+k$	5
		-104.32 $\mathrm{h}-7^{8.81}$	+183.41 $h+149 \cdot 16 h$	$+287.73 h+227.97 k$	
		- 82.40 h- 99.63	+198.77 $h+134.22 h$	+281.17 $h+233 \cdot 85 h$	12
Oct.		-139.00h-39.20h	+ $158.90 k+177.89 k$	$+297.90 k+217.09 k$	5
	58	- $157^{\circ} 00 \mathrm{~h}-2$	+ $131.214+205.88 k$	+288.21 $h+229.312$	10
		-117.42 $h-62.88$	+ $150.68 h+184.98 k$	$+268 \cdot 10 h+247 \cdot 86 k$	1
		-103.96 $h-76.93$	+ $192 \cdot 40 h+1+2 \cdot 78 h$	$+296.36 h+219.71{ }^{\prime}$	
		-154.18 $\mathrm{h}-100 \cdot 54$	$+56.62 h+206.02 h$	$+210 \cdot 80 h+306.56 h$	
		-127.14 h - 130.61 h	+129.29 4 +131.19 k	$+256 \cdot 43 h+261 \cdot 80 h$	
		-131.42h-125.19	$+127 \cdot 27 h+133 \cdot 28 k$	$+25^{8.69} k+25^{8 .}+7^{k}$	
	62.39	-137.21 h - 103.56	+ $1129.37 k+155.21 k$	$+256 \cdot 5^{8} h+25^{8.77} k$	
		-129.01 $h-112.11$	$+129.89 h+14^{6.99} k$	+ $258.90 h+259 \cdot 10 h$	
	62.49	$-128.02 h-113.62 h$	$+127 \cdot 0+h+1+9 \cdot+7 k$	$+255.06 h+263.09 h$	
		-131.21 h - 10578 l	+132.78 $h+1{ }^{1} 6.84 k$	$+263.99 h+252.62 k$	
		-118.31 $h-120.43$	+141.78h+135.89k	$+260.09 h+256.32 h$	
	61.61	-129.52 h - $105^{\prime} 4^{8}$	+134.04h+148.97 k	$+263 \cdot 56 h+254 \cdot 45 \frac{}{4}$	+12.56
	61.63	$-123.29 / 4-110.63 k$	+136.48h+146.02	+259.77 $h+256.65 h$	411.31
1864:					
Jan.	34.48	-133.12h-113.28 h	+126.88 $h+134.06 h$	$+260.00 h+247.3+h$	+04.06
	$34 \cdot 61$	-141.28h-107.49 h	$+125 \cdot 4^{6} h+132 \cdot 19 k$	$+266.7+h+234.68 k$	+03.31
	32.76	- $113.344^{h-120.15 ~} k$	+ $149 \cdot 32 h+125 \cdot 12 k$	$+262.66 h+2+5.27 k$	$40+33$
	32.79	-117.11 $h-115.60 \mathrm{k}$	+129.81 $h+143.212$	$+2+6.92 h+258.81 h$	+02.82
	$32 \cdot 93$	$-119.56 h-117.41 \mathrm{~h}$	+136.98h+133.09k	$+256 \cdot 54 / 4+250 \cdot 50 k$	403.83
	31.29	$-112.90 h-107.28 h$	+117.46h+165.69	$+230 \cdot 36 h+272.97 k$	$400 \cdot 79$
	31.09	-110.89 h-109.48 k	+138.94 $h+147.71 k$	$+2+9.83 h+257.19 k$	+03.8+
	31.41	- 116.02 h -- 11020	+ $136.66 k+143.09 k$	$+252.68 k+253.29 k$	403.00

RESULTS OF COMPARISON \&e.-continued.

Date.	Mean Temp.	Prussian Toise.	Ordnauce Toise.	1)ifference in Micrometer Divisions.	$\left\|\begin{array}{c} \mathbf{T}_{10}-\mathbf{T}_{0} \\ +\sigma . \end{array}\right\|$
1864:	-				
Jan 8	$30 \cdot 79$		+135.9+h+147.09 k	$+24.37{ }^{h}+261 \cdot 50 k$	402.94
" "	$30 \cdot 87$	- $110.06 h-113.36 h$	$+13+62 h+1+6.69 h$	$+2+4.68 h+260.05 h$	402.03
,	$3{ }^{1 \cdot 4}$	-113.88 $h-119.39 h$	$+138.73 h+135.05 k$	$+252.61 / 4+254.44 k$	403.86
9	32.22	-114.98 k - $130.80 k$	$+129 \cdot 12 h+132 \cdot 62 h$	$+2+4 \cdot 10 h+263.42 k$	404.26
" "	32.65	-120.91 h - $128.86 k$	+130.09h+127.82h	$+251.00 h+256 \cdot 68 h$	404.36
, "	$33^{\circ} 03$	-112.39 $h-140.26 h$	+129.32h+12+93h	$+241 \cdot 71{ }^{1}+265 \cdot 19 k$	40.3.76
	$33 \cdot 35$	-126.80 $h-131.32 h$	$+123.58 k+127.97 k$	$+250 \cdot 38 h+259.29 k$	405.96
May 12	62.73	- $134.444^{\prime}-131.54 k$	$+128 \cdot 46 h+122 \cdot 10 k$	$+262.90 h+253.64 k$	411.40
$"$	62.86	$-134.88 h-132.98 k$	$+124.81 h+123.23 k$	$+259.69 h+256.21 h$	410.90
	63.00	-135.87h-131.08 k	$+121 \cdot 46 h+127 \cdot 36 h$	$+257 \cdot 33 / 4+258 \cdot 44^{h}$	410.80
\% 13	63.45	-134.21 $2-138.71 \mathrm{k} \mid$	+121.19h+123.38 h	$+2.55 \cdot 40 h+262.09 k$	412.18
" "	63.52 63.57		$+116.67 h+125.40 h$	$+254 \cdot 40 k+263 \cdot 17 k$	$412.2+$
" "	63.57 63.66	-138.16h-133.99 ${ }^{-135.01}$!	+121.74h+122.76h	$+259.90 h+256.75 k$	+11.49
14	$63 \cdot 66$ 6.46		+122.59h+122.00h	$+257.60 k+259.06 k$	$41 \mathrm{I} \cdot 51$
14	63.46	-135.01 $h-13+3+h \mid$	$+126.02 h+122.27 h$	$+261.03 h+256.6 \mathrm{I} k$	412.28
" "	63.51	-134.52h-135.87h	+120.76h+127.22h	$+255.28 h+264.09 k$	413.68
" "	63.58	- $133.20 h-135.58 h$	+123.79h+126.93h	$+256.99 k+262.51 k$	413.78

Temperature corrected for errors of thermometers.
Each line of this Table gives us a result of the form,

$$
\mathbf{T}_{10}+\sigma-\mathbf{T}_{0}=a
$$

where a varies with the temperature. Let y be the excess of the expansion (for I^{0} Fabrenheit) of the Prussian bar above the Ordnance, and put

$$
\mathbf{T}_{19}+\sigma-\mathbf{T}_{0}=400+x+f y
$$

where f is the excess of the temperature of the bars at the time of observation above 62°, then every comparison gives an equation of the form

$$
\begin{equation*}
x+f y-a=0 \tag{I}
\end{equation*}
$$

Treating the 65 equations thus formed by the method of least squares we get for the determination of x and y the equations

$$
\begin{array}{r}
65 x-462.07 y-625 \cdot 50=0 \tag{2}\\
-462.07 x+13333.54 y+1756 \cdot 59=0
\end{array}
$$

If we write A and B for the absolute terms of these equations, we get

$$
\begin{align*}
& x+.0204135 \mathrm{~A}+.0007074 \mathrm{~B}=0 \tag{3}\\
& y+.0007074 \mathrm{~A}+.0000995 \mathrm{~B}=0
\end{align*}
$$

Restoring the values of A and B we find

$$
\begin{align*}
& x=\mathrm{I} 1.526 \tag{4}\\
& y=0.2677
\end{align*}
$$

and for the reciprocals of the weigbts of x, y, and $x+f y$

$$
\begin{align*}
& \text { x -0204I } \tag{5}\\
& \text { y -00010 } \\
& x+f y \cdot 02041+\cdot 00141 f+\cdot 00010 f^{2}
\end{align*}
$$

Substituting in the sixty-five equations the above values of x and y we get their errors, or the errors of the comparisons, as shown in the following Table :-

Date.	Error.	Date.	İror.	Date.		Lirror.
1863 : September 11	-2.28	1803: September 29	+0.09	$\begin{array}{r} 1864: \\ \text { Jauuary } \end{array}$	7	
Sep	$-1 \cdot 3^{6}$	", "	+0.72	Janury	"	-2.52 +0.58
" "	- 2.47	" ${ }^{\prime \prime}$	+1.50	"	"	-0.3+
", \quad "	-2.39	" 30	+0.68	"	8	-0.24
	-0.75	" "	+0.06	"	"	-1.17
" "	-1.22	" "	-0.48	"		+0.51
" \quad "	- 1.88	October 1	-0.50	"	9	+0.70
" 14		"	+1.52	"	"	+0.69
"	$-1 \cdot 36$	\because	+0.31	"	"	-0.01
" "	-1.63	2	+0.33	"	"	+2.10
September 18		October 20	$+0.37$	May	12	-0.33
, 19	$\begin{array}{r} +1.07 \\ -0.09 \end{array}$	"	+ 0.89	"	"	-0.86
		" $\quad \cdots$	+0.00	"		- 1.00
" 21	$+1.05$	" 21	-1.16	"	13	+0.26
"	+0.77	"	+0.93	"	"	+0.30
	+0.97	" ${ }^{\prime}$	+ 1.05	"	"	-0.46
" 22		22	-0.09	"	$\ddot{\prime \prime}$	-0.46
"	$\begin{array}{r} -0.17 \\ +0.95 \end{array}$	\cdots	-0.25	"	14	+0.36
" ${ }^{\prime \prime}$	$\begin{array}{r} 1.70 \\ +1.30 \\ +1.36 \end{array}$	23	+1.13	"	"	+1.75
		"	-0.12	"	"	$+1.83$
	$+1 \cdot 3^{6}$	1864: 5				
		January 5	-0.10 -0.80			
		" \quad "	-0.89 +0.83			
		" "	-0.89			
		" "	+0.08			

The sum of the squares of these errors is 82.589 . Hence the probable error of a single comparison is

$$
\begin{equation*}
\pm 0.674 \sqrt{\frac{82.859}{65-2}}= \pm 0.772 \tag{6}
\end{equation*}
$$

Now, if we count the number of errors which are greater, and the number that are less than the computed probable error we find 32 errors less than 77^{2} and 33 errors greater than $\cdot 77^{2}$; and so fur all is in accordance with the supposition of perfectly accidental errors. But on examination it will be seen that the errors in the first series are all of one sign as though affected by some constant error. The only cause that suggests itself is that the bar was supported on rollers which were true cylinders. On the other hand, the makers, Messrs. 'Troughton and Simms, were very carcful to adjust these rollers into parallelism, and it is, therefore, scarcely safe to conclude that this is the cause. In the second series there is a preponderance of positive errors suggesting a possible constant error here also. If by the value of y which has been obtained we correct all the comparisons to 62°, the different series give by these meuns the following results :-

Scries.	$\mathbf{T}_{10}+a-\mathbf{T}_{\mathbf{o}}$ at 62°.	Error.
\mathbf{I}	409.80	$-\mathbf{I} .73$
3	412.47	+0.94
3	411.95	+0.42
4	411.80	+0.27
5	411.49	-0.04
6	411.67	+0.14

Taking the mean of the determinations in the first and second series, we obtain as the value of $\mathbf{T}_{10}+\sigma-\mathbf{T}_{0}$ at $62^{\circ}, 41 I^{\prime} 14$, which does not differ materially from the results in the other series. The errors, therefore, in the second series nearly balance those in the first, and for this reason we shall not reject the first series, although there is a strong temptation to do so.

Taking $\pm 0.77^{2}$ as the probable error of single comparison or equation, the probable error of x

$$
\begin{equation*}
= \pm 0.772 \sqrt{\cdot 02041}= \pm 0.110 \tag{7}
\end{equation*}
$$

and the probable error of y

$$
\begin{equation*}
= \pm 0.772 \sqrt{\cdot 00010}= \pm 0.0077 \tag{8}
\end{equation*}
$$

So that our final results are-

$$
\begin{equation*}
\mathbf{T}_{10}-\mathbf{T}_{0}=411.53 \pm 0.11-\sigma \tag{9}
\end{equation*}
$$

at the temperature of 62° Fahrenheit. And the excess of the expansion of \mathbf{T}_{10} above that of T_{0} for I° of temperature

$$
\begin{equation*}
=0.2677 \pm 0.0077 \tag{IO}
\end{equation*}
$$

If the first series were rejected, we should have obtained $\mathbf{T}_{10}-T_{0}=411.98 \pm{ }^{\circ} 095-\sigma$ at 62°; and the difference of expansion $=0.284^{2} \pm{ }^{\circ} 0061$.

3.

In the description of the contact apparatus it has been shown, that if, when the parallel or longitudinal and transverse lines were drawn, the centres of the semicylinders were not in a line parallel to the direction of motion of the needles, but were moveable in two distinct parallel lines as represented in figure 2 , page 12 ; then the distance of the transverse lines from one another will be increased when the semicylinders are brought exactly opposite to one another by the amount

$$
\frac{g}{4 i^{2}}\left(i,-\delta^{\prime}\right)^{i}
$$

where \hat{o}, and $\hat{\delta}^{\prime}$ are the distances apart of the transverse lines, first, when (by the motion of the transverse slow motion screw) the lines a and b^{\prime} are brought into one straight line, and, second, when the lines a^{\prime} and b are in one straight line. If then δ be the distance apart of the transverse lines when the longitudinal lines are normally adjusted as in figure 2 , the maximum distance or the quantity $\sigma\left(=\lambda+\lambda^{\prime}\right)$ is

$$
\begin{equation*}
\sigma=\hat{o}+\frac{\xi}{4 i^{2}}\left(\hat{\delta},-\hat{\delta}^{\prime}\right)^{2} \tag{II}
\end{equation*}
$$

We shall first consider the measurement of the quantity δ. The approximate value of this space is $\frac{1}{60}$ of an inch from which it differs but very little. The easiest way of measuring this would be simply to run it over with the micrometer screw of either or both microscopes, but the largeness of the space requires that the value of a division be very accurately known : δ being over 700 divisions. By the formula (23) page 63, it would appear that the probable error of a single measurement of this space with the micrometer is

$$
\begin{aligned}
& \text { for } \mathrm{H} \ldots \ldots \pm \sqrt{\cdot 187\left(\frac{7}{10}\right)^{2}+\cdot 20}= \pm 0.54 \\
& \text { for } \mathrm{K} \ldots \pm \sqrt{\cdot 347\left(\mathrm{~T}_{v}\right)^{2}+\cdot 20}= \pm 0.61
\end{aligned}
$$

From this we might conclude that not much error nced be feared from the actual measurement of the space by the micrometers; yet it was thought better to compare the space δ with some of the fiftieths of an inch in the foot $\mathbf{O F}$. The five equal subdivisions of the tenth of an inch [6.7] on O F were accordingly chosen; and on four different occasions, September 15 th, 24 th, 26 th, and October 2 d , the space $\%$ was compared with each of these five spaces. In Table VIII., page 59, we have the errors of the subdivisions expressed in the micrometer divisions. The errors of the four lines subdividing [6.7] into fiftieths are

$$
\begin{aligned}
& -\frac{1}{2}(0.99 h+0.61 k)=-0.64 \\
& -\frac{1}{2}(2.31 h+1.70 k)=-\mathrm{I} \cdot 60 \\
& -\frac{1}{2}(3.56 h+2.97 k)=-2.60 \\
& -\frac{1}{2}(3.14 h+2.55 k)=-2.27
\end{aligned}
$$

Consequently the errors of the five spaces as fifths of [6.7] are

$$
\begin{align*}
& \text { ist }-0.64 \\
& \text { 2d }-0.96 \\
& \text { 3d }-1.00 \tag{12}\\
& \text { 4th }+0.33 \\
& \text { 5th }+2.27
\end{align*}
$$

The space δ was compared with each of these fiftieths of an inch in precisely the same manner as the tenths of inches on OF were compared with $\frac{2}{10}$ of an inch and $\mathrm{T}^{\frac{3}{0}}$ of an inch on the small silver scale, see page 52. The only difference is, that the contact apparatus was on the right of the foot \mathbf{O} F. See fig. 5, Plate VI.

Each comparison was conducted exactly as in the comparison of two bars, viz., in the following order :-
$\left\{\begin{array}{lcccc}\text { Left lines, } & 3 \text { readings of } \mathrm{H}, \text { and } 3 \text { readings of K } \\ \text { Right lines, } & " & " & " & "\end{array}\right.$
$\left\{\begin{array}{lllll}\text { Right lines, } & " & " & " & " \\ \text { Left lines, } & " & " & " & "\end{array}\right.$
$\left\{\begin{array}{llll}\text { Left lines, } & " & " & "\end{array}\right) "$
Right lines,

In all, 36 micrometer readings, forming one comparison.
The following Table contains the results of the twenty comparisons. The sixth column contains the correction from equation (12), to be applied for the errors of the spaces as fifths of [6.7]. The seventh column contains the corrected value of the excess of δ over one-fiftieth of an inch.

Space.	Left Lines.	Right Lines.	L. - \boldsymbol{R}. in Micr. Divisions.	Diff. of Length.	Corrections.	Corrected Diff, in Length.
First$\frac{2}{100}$$\{$	+ 0.70h-15.17k	$-12.60 h-14.17 k$	$+13.30 h-1.00 k$	+ 9.77	-0.64	9'13
	+ 9.20h + $23.03 h$	$+3 \cdot 80 h+14.73 k$	$+5.40 h+8.30 h$	+10.91	"	9.13 10.27
	$+20.63 k+8.63 k$	$+4.70 h+10 \cdot 50 k$	+15.93h-1.87h	+ 11.17	,	10.53
	$+1.67 h+55.10 k$	+ $0.17 h+43.70 k$	+ 1.50h+11.40h	+10.29	"	9.65
Second$\frac{2}{100}$	-12.50h+2.40k	$-16.24 h-8.00 h$	$+3.74 h+10.40 k$	+ II.27	-0.96	10.31
	$+0.87 h+31.13 k$	- $1.57 h+18.57 h$	+ $2 \cdot 44 h+12.56 h$	+ 11.96	"	11.00
	$+16.80 h+10.13 k$	$+1.87 h+10.37 h$	+14.93h-0.24k	+11.68	,	$10 \cdot 72$
	$+36.93 k+23.47 k$	$+23.83 h+22 \cdot 30 k$	+13.10h+1.17k	+11.34	,	$10 \cdot 3^{8}$
Third$\frac{2}{100}$$\{$	$+6.87 h+5.37 k$	- $6.27 h+3.07 k$	+13.14h+2.30h	+11.29 +12.02	- 1.00	II. 29
	$+0.87 h+32.43 h$ $+24.20 h+8.17 k$	$+6.13 h+11.83 k$ $+8.63 h+8.90 k$	- $5.56 h+20.60 k$	+12.02 +11.80	,	11.02
	$+24 \cdot 20 h+8 \cdot 17 k$	$+8.63 h+8.90 k$	+15.57h-0.73h	+ 11.80	"	10.80
	$+18 \cdot \mathrm{r} 3 / 4+28.63 k$	$+3.60 h+29.00 k$	+14.53h-0.37k	+11.25	"	10.25
$\underset{2}{\text { Fourth }}$	$+8.97 h+1.87 h$	$+0.03 h-0.23 h$	$+8.94 h+2.10 k$	+11.25 +8.79 +10.17	+0.33	9.12
	$+16.77 h+8.23 k$ $+21.57 h+8.17 k$	$+3.37 h+8.83 h$ $+8.60 h+7.73$	$+13.40 h-0.60 k$ $+12.97 h+0.44 k$	+8.17 +10.66	,	10.50
$\frac{100}{100}$	$+21.57 h+8.17 h$ $+17.07 h+32.90 k$	$+8.60 h+7.73 h$ $+5.13 h+31.83$	$+12.97 h+0.44 k$	$+10.66$,	10.99
	$+17.07 h+32.90 h$	+ 5.13h+31.83h	$+11.9+h+1.07 k$	$+10.34$	"	10.67
$\left.\begin{array}{l}\text { Fifth } \\ \frac{2}{100}\end{array}\right\}$	+13.03h-3.27k	+ $1.87 h-1.20 h$	+11.16h-2.07k	$+\quad 7.22$ $+\quad 9.30$	$+2.27$	9.49
	$+11.47 h+14.60 k$ $+30.50 h+2.50 k$	$+0.03 h+14.33 h$	+11.44h+0.27h	+ 9.30	+	11.57
	$+30.50 h+2.50 h$	+18.50h - 5.17h	+12.00h-2.67k	+ 7.41	\%	9.68
	$+20.97 h+32.57 h$	$+9.93 h+34.50 h$	+ II.04h- $1.93 k$	+ 7.24	,	9.51

The mean of the quantities in the last column is 1034 , and the sum of the squares of the errors is 9.55 . Hence the probable error of a single determination is -

$$
\begin{equation*}
\pm .674 \sqrt{\frac{9.55}{20-1}}= \pm 0.478 \tag{13}
\end{equation*}
$$

and the probable error of the final determination

$$
\begin{equation*}
\pm \frac{-478}{\sqrt{20}}= \pm 0.107 \tag{14}
\end{equation*}
$$

We have then

$$
\begin{equation*}
\delta=\frac{1}{5}[6 \cdot 7]+10 \cdot 34 \tag{15}
\end{equation*}
$$

Here δ is composed of two parts, and has consequently two partial probable errors. The probable error of the second part results from the comparisons in Table H., and we have found it to be $\pm \cdot 107$. The probable error of the first part depends on the probable error of the determination of the value of [6.7] on OF or rather is affected by one-fifth part of that error. The errors of the determinations of the subdivisions of [6.7] do not enter. Now, by equations (3), page 49, [6.7] is expressed thus:-

$$
[6.7]=\frac{\mathrm{F}}{120}-x_{\mathrm{c}}+x_{7}+\frac{x_{b}}{10}+\frac{x_{p}}{60}=\frac{\mathrm{F}}{120}-1 \cdot 42
$$

From equations (12), page 56, the reciprocal of the weight of $-x_{0}+x_{7}$ is

$$
\frac{28}{40}-\frac{12}{40}+\frac{27}{40}=\frac{43}{40}
$$

consequently by equation (32), page 65, the probable error of the determination of $-x_{6}+x_{7}$ is

$$
\pm \frac{.386}{5} \sqrt{\frac{43}{40}}= \pm .080
$$

The probable errors of x_{b} and x_{g} were shown to be $\pm .036$ and $\pm .037$; hence finally the probable error of the determination of [6.7] is

$$
\pm \sqrt{(.080)^{2}+(.004)^{2}+(.001)^{2}}= \pm .080
$$

and

$$
\begin{equation*}
\frac{1}{5}[6.7]=\frac{F}{600}-0.28 \pm \cdot 016 \tag{16}
\end{equation*}
$$

Thus, the value of δ becomes

$$
\delta=\frac{\mathbf{F}}{600}+10.06 \pm \sqrt{(.107)^{2}+(.016)^{2}}
$$

$$
\begin{equation*}
\therefore \delta=565 \cdot 62 \pm 0 \cdot 108 \tag{17}
\end{equation*}
$$

It remains to compute the small correction to this quantity δ which is exhibited in equation (II). In order to obtain $\delta,-\delta^{\prime}$ both δ, and δ^{\prime} were measured by runs of the micromeler H . Each quantity was measured ten times and they were measured alternately, first, δ then δ^{\prime} and so on. Thus, each measure was eatirely independent as far as contact and adjustment of the longitudinal lines into one, are concerned. But the focal adjustment remained constant through the series, purposely, this error disappearing in $\delta,-\delta^{\prime}$. The following Table contains the result of these measures; each number is the difference between the mean of two readings of the left line and the mean of two readings of the right line.

Divisions of Microneter \mathbf{H}.	
δ	8^{\prime}
¢ ${ }_{\text {d }}$	$\underset{702.8}{\text { d }}$
$695 \cdot 9$	701.2
69.5	7018
$69+3$	$7 \mathrm{OL}+$
$69+3$	$703 \cdot 4$
694.6	702.6
$69+8$	702.7
$69+5$	702.3
$69+3$	$70 \cdot 3$
$69+2$	702.2

Therefore

$$
\begin{aligned}
\delta_{,} & =694 \cdot 80 \pm 0 \cdot 127 \\
\delta^{\prime} & =702 \cdot 17 \pm 0 \cdot 115 \\
\delta,-\delta^{\prime} & =7 \cdot 37 \pm 0 \cdot 171
\end{aligned}
$$

or, expressed in millionths of a yard

$$
\begin{equation*}
\delta-\delta^{\prime}=5.86 \pm 0.196 \tag{18}
\end{equation*}
$$

The distance apart of the parallel longitudinal lines $(=i)$ is 775 divisions of H or $616 \cdot 0$ in our unit; also the radius ρ of the cylinders is 0.365 inch, which referred to the unit

$$
\begin{gather*}
=\frac{365}{1000} \cdot \frac{1000000}{36}=10139 \\
\therefore \frac{\rho}{4 i^{2}}\left(\delta,-\delta^{\prime}\right)^{2}=2535\left(\frac{5 \cdot 86 \pm \cdot 136}{616}\right)^{2} \\
 \tag{19}\\
\frac{\rho}{4 i^{2}}\left(\delta,-\delta^{\prime}\right)^{2}=0.23 \pm 0.011
\end{gather*}
$$

The correction is, therefore, a very small quantity, and its probable error we may neglect. Hence, finally, from (II), (I7), (19),

$$
\begin{equation*}
\sigma=565.85 \pm 0.108 \tag{20}
\end{equation*}
$$

4.

If in equation (9) we substitute the value of σ given in equation (20) we get

$$
\begin{gathered}
\mathbf{T}_{10}-\mathbf{T}_{0}=-\mathrm{I} 54 \cdot 32 \pm \sqrt{(\cdot \mathrm{IIO})^{2}+(\cdot 108)^{2}} \\
\therefore \mathbf{T}_{10}=\mathbf{T}_{0}-\mathrm{I} 54 \cdot 32 \pm 0.154
\end{gathered}
$$

For the value of T_{0} we refer to page 144 , where equation (16) gives

$$
\mathbf{T}_{0}=(2 \cdot 13167512 \pm \cdot 000000214) \mathbf{Y}_{55}
$$

from which there follows

$$
\mathbf{T}_{10}=2 \cdot 13152080 \mathbf{Y}_{55}
$$

5.

With respect to the probable error of the result at which we have now arrived, it will be necessary in order to obtain it with precision, to review the whole of the operations which have led to the number 2.13152080, and to show the manner in which it is connected with each of these operations, and the extent to which it is dependent on them severally.

Retaining the notation of equations (I), (2), (3), pages 48,49 , we have by equation (42), page 70 ,

$$
[\tau . f]=\frac{474}{1200} \mathbf{F}-\frac{4}{10} x_{2}-x_{\tau}-\frac{6}{10} x_{s}-\frac{26}{100} x_{b}+x_{f}+\frac{474}{600} x_{q}
$$

Thus the determination of the length of $[\tau . f]$ as a portion of \mathbf{O} (depends on four entirely independent operations.

1. The bisection of OF,
2. The subdivision of one-half of $\mathbf{O F}$ into six equal parts,
3. The subdivision of one of these sixths or inches into ten,
4. The subdivision of one of these last parts into ten.

The corresponding parts of the above expression for [$\tau . f$] are as follows:-

$$
\begin{aligned}
& 1 \ldots .{\frac{474}{630} x_{\sigma}}^{2 \ldots-\frac{26}{100} x_{b}+x_{f}} \\
& 3 \ldots-\frac{4}{10} x_{i}-\frac{6}{10} x_{6} \\
& +\ldots . x_{\tau}
\end{aligned}
$$

Let λ_{1} be the excess of F over $\frac{1}{3} \mathbf{Y}_{5 s}$ at $62^{\circ}, \epsilon_{1}$ the excess of the expansion of F over $\frac{1}{3} \mathbf{Y}_{50}$ for each degree Fabrenheit, then

$$
\mathbf{F}=\frac{1}{3} \mathbf{Y}_{5}+\lambda_{1}+\epsilon_{1}(t-62)
$$

Let λ_{2} represent the excess of the length of the two adjacent yards on OT above $2 \mathrm{Y}_{\text {ss }}$ at 62°, and let ε_{2} represent the excess of the expausion of Y above one yard of OT then the length of the two yards of OT

$$
=2 \mathbf{Y}_{55}+\lambda_{2}-2 \varepsilon_{3}(t-62)
$$

Let λ_{3} be the excess of length of the small space of $4 \cdot 74$ inches on $\mathbf{O T}$ above [$\tau \cdot f$] on O F at the temperature $62^{\circ}+b$, then the excess of the space on $O T$ above the space on OF at 62° is

$$
\lambda_{3}+b \frac{474}{1200}\left(\varepsilon_{1}+\frac{1}{3} \epsilon_{2}\right)
$$

Hence the length of $O T$ at 62° is

$$
2 \mathbf{Y}_{65}+[\tau \cdot f]+\lambda_{2}+\lambda_{3}+b \frac{474}{1200}\left(\varepsilon_{1}+\frac{1}{3} \epsilon_{2}\right)
$$

Now at 62°

$$
[\tau . f]=\frac{.474}{3600} Y_{55}+\frac{474}{1200} \lambda_{1}-\frac{4}{10} x_{2}-x_{\tau}-\frac{6}{10} x_{y}-\frac{26}{100} x_{b}+x_{f}+\frac{474}{600} x_{g}
$$

And the consequent length of the Ordnance Toise is, at 62°,
$\frac{7674}{3600} Y_{50}+\frac{474}{1200} \lambda_{1}+\lambda_{2}+\lambda_{j}+\frac{474}{1200} b\left(\epsilon_{1}+\frac{1}{3} \epsilon_{2}\right)-\frac{4}{10} x_{2}-x_{\tau}-\frac{6}{10} x_{3}-\frac{26}{100} x_{b}+x_{f}+\frac{474}{600} x_{g}$
Thus the length of OT depends on the four operations enumerated above, together with the following :-
5. The comparisons of $\mathbf{O F}$ with \mathbf{Y}_{55}
6. The comparisons of the two yards of $O T$ with $Y_{s s}$
7. The comparison of the small space on $O T$ with the corresponding space on 0 F

Again, the distance of the two lines of the contact apparatus when brought into conjunction has been found to exceed the fifth part of [6.7] by a quantity, say $\lambda_{\text {, }}$

$$
\begin{aligned}
\sigma & =\frac{1}{5}[6 \cdot 7]+\lambda_{4} \\
& =\frac{\mathbf{F}}{600}-\frac{1}{5} x_{9}+\frac{1}{5} x_{7}+\frac{x_{b}}{50}+\frac{x_{g}}{300}+\lambda_{4} \\
& =\frac{\mathbf{Y}_{06}}{1800}+\frac{\lambda_{1}}{600}+\lambda_{4}-\frac{1}{3} x_{4}+\frac{1}{3} x_{7}+\frac{x_{b}}{50}+\frac{x_{g}}{300}
\end{aligned}
$$

Finally, let λ_{s} be the excess of the length of the Prussian Toise $+\sigma$, above the Ordnance 'Toise at 62°, then

$$
\begin{aligned}
& \mathbf{T}_{10}-\mathbf{T}_{0}=\lambda_{5}-\sigma \\
& =-\frac{\mathbf{V}_{55}}{1800}-\frac{\lambda_{1}}{600}-\lambda_{1}+\lambda_{5}+\frac{1}{5} x_{0}-\frac{1}{5} x_{7}-\frac{x_{b}}{50}-\frac{x_{g}}{300}
\end{aligned}
$$

where two further operations are involved; viz.,
8. The determination of the value of the space on the contact apparatus.
9. The comparison of the Ordnance and Prussian Toises.

We have then the following expression for the length of the Prussian Toise at 62°

$$
\left.\begin{array}{rl}
\frac{7672}{3600} \mathbf{Y}_{t 5} & +\frac{472}{1200} \lambda_{1}+\lambda_{2}+\lambda_{3}-\lambda_{4}+\lambda_{5}+\frac{474}{1200} b\left(\varepsilon_{1}+\frac{\varepsilon_{2}}{3}\right) \\
& -\frac{4}{10} x_{2}-x_{\tau}-\frac{6_{6}}{10} x_{3}+\frac{1}{5} x_{0}-\frac{1}{5} x_{7}-\frac{28}{100} x_{b}+x_{g}+\frac{472}{600} x_{0}
\end{array}\right\}
$$

The parts of this formula which appertain to the several operations in the order enumerated above are

$$
\begin{array}{ll}
\text { I. } & \frac{472}{600} x_{\sigma} \\
\text { 2. } & -\frac{28}{100} x_{b}+x_{f} \\
\text { 3. } & \frac{1}{5}\left(-2 x_{2}-3 x_{3}+x_{8}-x_{7}\right) \\
\text { 4. } & -x_{\tau} \\
\text { 5. } & \frac{472}{1200} \lambda_{1}+\frac{474}{1200} b \epsilon_{1} \\
\text { 6. } & \lambda_{2}+\frac{474}{3600} b \epsilon_{2} \\
\text { 7. } & \lambda_{3} \\
8 . & -\lambda_{4} \\
\text { 9. } & \lambda_{5}
\end{array}
$$

Now by equations 6 , page ${ }_{51}$, the reciprocal of the weight of $\alpha x_{b}+x_{f}$ is

$$
\frac{11 \alpha^{2}+2 \alpha+11}{18}
$$

and if $\alpha=-\frac{28}{100}$ this becomes $\frac{113024}{180000}$, and consequently the probable error of the determination

$$
\pm \frac{.233}{5} \sqrt{113} \frac{180}{180}= \pm \cdot 037
$$

Again, from equations (12), page 56 , the reciprocal of the weight of the determination of $\alpha x_{2}+\beta x_{3}+\gamma x_{6}+\hat{\delta} x_{7}$ is

$$
\left.\begin{array}{r}
\frac{27}{2} \alpha^{2}+3 \alpha \beta+6 \alpha \gamma+7 \alpha \grave{ } \\
+\frac{27}{2} \beta^{2}+14 \beta \gamma+3 \beta \delta \\
+14 \gamma^{2}+6 \gamma^{\delta} \\
+\frac{27}{2} \delta^{2}
\end{array}\right\} \div 20
$$

And making $a=-2 ; \beta=-3 ; \gamma=1 ; \delta=-1$, the reciprocal of the weight of the determination of $-2 x_{2}-3 x_{3}+x_{6}-x_{7}$ becomes

$$
\begin{gathered}
184 \\
20
\end{gathered}
$$

and the probable error of the determination of $-2 x_{2}-3 x_{3}+x_{6}-x_{7}$

$$
= \pm \frac{386}{5} \sqrt{10}= \pm 0.234
$$

and the probable crror of one-fifth of this is

$$
\pm 0.017
$$

The reciprocal of the weight of $\lambda_{1}+\theta \varepsilon_{1}$ by equation (3), page 76 , is

$$
.10723+.011506+.0004477^{8}
$$

now $b=.53$, and if $\theta=\frac{4}{4} \frac{1}{2} b$ this becomes $=.113+8$, and the probable error of $\lambda_{1}+\frac{474}{472} b \varepsilon_{1}$ is

$$
\pm 0.330 \sqrt{\cdot 1134^{8}}= \pm 0.111
$$

and the probable error of

$$
\frac{472}{1200} \lambda_{1}+\frac{474}{1200} b \varepsilon_{1}
$$

becomes

$$
\pm \frac{472}{1200} \times 0.111= \pm 0.044
$$

Again by equation (8), page 100 , it appears that the reciprocal of weight of the determination of $x+x^{\prime}+6 y$ is

$$
\cdot 12666+.006636+.000183 g^{2}
$$

In the formula we are now considering, λ_{2} corresponds to $x,+x$, and s_{2} to $-y$, we must therefore in order to obtain the reciprocal of the weight of the determination of

$$
\lambda_{2}+\frac{474}{3600} \dot{d} \varepsilon_{2}
$$

make

$$
\theta=-\frac{474}{3600} b=-\frac{47+\times 53}{360000}
$$

which gives for the reciprocal of the weight

$$
\cdot 12620
$$

and therefore the probable error of $\lambda_{2}+\frac{474}{3600} b \varepsilon_{2}$ is by equation (io), page 101,

$$
\pm \cdot 518 \sqrt{\cdot 12620}= \pm 0.184
$$

The following Table shows the amount of probable error due to the nine operations.

Naturc of Operatiou.	I'robable Error.
1. The bisection of the foot O F	$\pm \cdot 029$
2. The subdivision of one-half of OF into six equal parts	$\pm \cdot 037$
3. The suldivision of one of these parts into ten -	$\pm \cdot 047$
4. The subdivision of one of these last parts again into tel	$\pm \cdot 098$
5. The comparison of O F with $\mathbf{Y}_{s s}$. -	$\pm \cdot 044$
6. The comparison of \mathbf{O} T with \mathbf{Y}_{0} -	$\pm \cdot 184$
7. The comparison of T with OF - -	$\pm{ }^{\text {¢ }} 064$
8. The measurement of the space on the contact apparatus	$\pm \cdot 107$
g. The comparison of O T with the Prussian Toise	$\pm \cdot 110$

$$
\begin{aligned}
(.029)^{9}+(.037)^{2}+(.047)^{2}+(.098)^{2} & +(.044)^{2}+(.184)^{2}+(.064)^{2}+(.107)^{2}+(.110)^{2} \\
& =(.278)^{2}
\end{aligned}
$$

Hence the length of the Prussian Toise in terms of the Copy of the Standard Yard No. 55 both being at 62° Fabrenheit is

$$
\mathbf{T}_{10}=(2 \cdot 13152080 \pm \cdot 00000028)
$$

XII.

DETERMINATION OF TIIE LENGTII OF THE BELGIAN TOISE.

The Standard Toise of the "Dépôt de la Guerre" of Belgium is in all respects similar to the Prussian Toise which has been already described. They were made by the same maker nearly at the same time, and are according to the determination of General Baeyer almost exactly of the same length. The only difference is that one is marked No. 10 and the other, the Belgian, is No. in.

The Toise was lent to this Department in 1862 by General Nereuburger and was brought to Southampton by Captain Libois in the month of September that its length might be obtained in terms of the Standard Yard. Being the first experiment in comparisons between a measure a traits and a measure a bouts much difficulty was found in getting satisfactory results. The computed probable error of the resulting length was $2 \cdot 13$ (millionths of a yard). This is rather a large quantity for a computed probable error, and moreover the manifest imperfections of the means then available left much to be desired.

Accordingly, in September 1864, the Toise was again, at the request of Colonel Sir Henry James, R.E., lent by the Minister of War at Brussels, Geueral Sinon, for comparison with the Ordnance Toise in the same manner and with the same apparatus as the Prussian Toise had been compared. The Toise No. i I arrived at Southampton on the morning of 2gth September, and was immediately placed on the apparatus, and the comparisons commenced next day.

1.

In order to guard against any possible change of length in the Ordnance Toise, O T, which might have taken place since October 1863, it was considered advisable to examine each of its thee spaces $[\alpha \cdot \beta],[\beta \cdot \gamma],[\gamma \cdot \bar{\delta}]$ previously to the comparison with the Belgian Toise. A series of ten comparisons of $[\alpha \cdot \beta]$ with the copy of the Standard Yard No. 55 was made accordingly on September Igth, 2oth, 22d, 23 d : ten comparisons of $[\beta \gamma]$ were also made on the $21 \mathrm{st}, 22 \mathrm{~d}$, and 24 th, where by a comparison is meant the mean result of one visit.

On 26th September ten single comparisons of $[\gamma \cdot i]$ with the space $[\tau \cdot f]$ on the bar OT were made. Here by single comparison is meant three micrometer readings with euch microscope of the one bar, and the same of the other bar.

The two Tables following contain these comparisons.
Comparisons of the two yards of $\mathbf{O} \mathbf{T}$ with $\mathbf{Y}_{\text {go }}$.

Temperatures corrected for errors of thermometers.

Comparisons of Space [$\gamma \cdot \delta$] on OT with Space [r.f] on O F.

September 26 th 1864.
Mean temperature $59^{\circ} .80$.

| OT | OF | Difference
 in Micronler Divisions. | $[\gamma \cdot 8]-[\tau \cdot f]$ |
| :---: | :---: | :---: | :---: | :---: |
| $15.53 h+24.40 h$ | $22.00 h+24.27 h$ | $+6.47 h-0.13 h$ | $5 \cdot 04$ |
| $12.30 h+28.17 h$ | $12.13 h+32.73 h$ | $-0.17 h+4.56 h$ | 3.50 |
| $18.50 h+2180 h$ | $20.3 . h+24.47 h$ | $+1.83 h+2.67 h$ | 3.59 |
| $21.87 h+19.23 h$ | $21.83 h+23.87 h$ | $-0.04 h+4.64 h$ | 3.67 |
| $19.40 h+21.77 h$ | $24.03 h+21.13 h$ | $+4.63 h+0.64 h$ | 3.17 |
| $19.23 h+21.33 h$ | $19.30 h+25.27 h$ | $+0.57 h+3.92 h$ | 3.58 |
| $22.70 h+18.10 h$ | $19.67 h+25.13 h$ | $-3.03 h+7.03 h$ | 3.20 |
| $23.40 h+17.97 h$ | $24.03 h+21.37 h$ | $+0.63 h+3.40 h$ | 3.21 |
| $22.43 h+18.47 h$ | $24.13 h+21.30 h$ | $+1.70 h+2.83 h$ | 3.61 |
| $22.67 h+17.80 h$ | $23.07 h+22.10 h$ | $+0.40 h+4.30 h$ | 3.75 |

If we take the means of the second and last columns of the first Table we find that the yarl [$a \cdot \beta$] was at the temperature of $60^{\circ} \cdot 13$, greater than the Standard Yard by 6.20 ; and the yard $[\beta \cdot \gamma]$ at the temperature $59^{\circ} \cdot 46$, greater than the Standard Yard by $3 \cdot 36$. Now the values we have obtained for these gards are, see page 102,

$$
\begin{aligned}
& {[\alpha \cdot \beta]=Y_{35}+6 \cdot 18-0.44^{2}(t-62)} \\
& {[\beta \cdot \gamma]=Y_{53}+2.45-0.44^{2}(t-62)}
\end{aligned}
$$

if here we make in the first equation $t=60 \cdot 13$ and in the second $t=59 \cdot 46$ we obtain

$$
\begin{aligned}
& \text { at } 60^{\circ} \cdot 13[\alpha \cdot \beta]=\mathbf{Y}_{55}+7 \cdot 01 \\
& \text { at } 59^{\circ} \cdot 46[\beta \cdot \gamma]=\mathbf{Y}_{55}+3 \cdot 57
\end{aligned}
$$

which are somewhat larger than the quantities given by the last series of comparisons, but not sufficiently differeut to indicate any real change of length.

We shall therefore combine these observations with the thirty comparisons of each yard given at pages 98,99 .

As before, let

$$
\begin{aligned}
& {[\alpha \cdot \beta]=\mathbf{Y}_{55}+x^{\prime}+f^{\prime} y} \\
& {[\beta \cdot \gamma]=\mathbf{Y}_{55}+x,+f, y}
\end{aligned}
$$

Where f is the temperature of the bars -62°. Then we have for the determination of $x^{\prime} x$, and y a series of eighty equations of the form

which treated according to the method of least squares give

$$
\begin{array}{r}
40 x^{\prime}+\left(f^{\prime}\right) y-\left(a^{\prime}\right)=0 \tag{I}\\
40 x+(f) y-\left(a_{i}\right)=0 \\
\left(f^{\prime}\right) x^{\prime}+(f) x+\left[\left(f^{\prime \prime}\right)+\left(f_{2}^{\prime 2}\right)\right] y-\left[\left(f^{\prime} a^{\prime}\right)+\left(f, a_{i}\right)\right]=0
\end{array}
$$

The results of the multiplications here implied, are

$$
\begin{align*}
\left(f^{\prime}\right) & =-288 \cdot 19 \tag{2}\\
\left(a^{\prime}\right) & =367 \cdot 58 \\
\left(a^{\prime} f^{\prime}\right) & =-4220 \cdot 5802 \\
\left(f^{\prime 2}\right) & =5676 \cdot 1503 \\
(f) & =-298 \cdot 95 \\
(a,) & =227 \cdot 98 \\
(a, f) & =-2906 \cdot 3723 \\
\left(f^{\prime}\right) & =4803 \cdot 8443
\end{align*}
$$

And the final equations,

$$
\begin{array}{r}
40 \cdot x-288 \cdot 19 y-367 \cdot 58=0 \tag{3}\\
40 x-298 \cdot 95 y-227 \cdot 98=0 \\
-288 \cdot 19 x^{\prime}-298 \cdot 95 x+10479 \cdot 99 y+7126 \cdot 952=0
\end{array}
$$

From which

$$
\begin{array}{cc}
x^{\prime}= & 5.949 \tag{4}\\
x= & 2.338 \\
y= & -0.4498
\end{array}
$$

If we write $A B C$ in place of the absolute terms of the equations, we get

$$
\begin{align*}
& 0=x+.0334139 \mathrm{~A}+.0087280 \mathrm{~B}+.0011678 \mathrm{C} \tag{5}\\
& 0=x+.0087280 \mathrm{~A}+.0340539 \mathrm{~B}+.0012114 \mathrm{C} \\
& 0=y+.0011678 \mathrm{~A}+.0012114 \mathrm{~B}+.0001621 \mathrm{C}
\end{align*}
$$

Thus we have for the lengths of the two yards

$$
\begin{align*}
& {[\alpha \cdot \beta]=\mathbf{Y}_{5 j}+5 \cdot 95-0.4498(t-62)} \tag{6}\\
& {[\beta \cdot \gamma]=\mathbf{Y}_{55}+2 \cdot 34-0.4498(t-62)}
\end{align*}
$$

which are less than the values resulting from the first 30 comparisons of each yard by 0.23 and 0.11 .

From the last column of the Table, page 140 , it appears that at the temperature of $59^{\circ} .80[\gamma . \delta]$ is greater than the space $[\tau \cdot f]$ on OF by 3.63 . Now the excess of the expansion of the former over the latter we have found, page 103 , to be

$$
\frac{474}{3600} y-.0026
$$

where y is as found above -.4498 ; that is, -.0618 per 1° Fabrenheit. Consequently the correction to reduce observations at $59^{\circ} .80$ to $62^{\circ} .00$ is $-.0618 \times 2.20=-0.13$. This is to be applied to the observed results, and if we correct (by +.03), the observed differences taken at the temperature of $62^{\circ} \cdot 53$, recorded page ioz, the general mean of the forty comparisons is $3 \cdot 40$, so that at 62°

$$
\begin{equation*}
[\gamma \cdot \delta]=[\tau \cdot f]+3 \cdot 40 \tag{7}
\end{equation*}
$$

This differs but little from the result of the first 30 comparisons, viz., 3.37.
We shall now bring together the errors of the 40 comparisons of cach space in the following Table:-

$[\alpha \cdot \beta]$		[3.7]		$\lceil\gamma \cdot \delta]$	
-0.25	- 1.68	-0.49	+0.43	+0.48	$+0.04$
+0.56	-0.4	-0.75	+0.17	+0.41	$+0.72$
- 1.33	+1.75	+0.05	-0.01	-1.1]	-0.57
-0.63	+0.80	$+0.48$	-0.72	+0.08	+0.00
-1.18	+0.82	+0.26	-0.61	$+0.02$	-0.61
+0.35	-0.04	+0.66	-0.15	-0.10	$+0.0+$
+0.80	-0.05	-0.93	-0.31	-0.87	+0.13
-0.67	+0.54	-0.02	-0.18	+0.28	-0.99
+0.61	$+0.23$	-1.31	-0.47	$+0.28$	-0.0.3
-0.24	$+0.28$	-0.07	$-1.0+$	-0.03	-0.27
-1.32	+0.97	$+0.67$	+ $5 \cdot 16$	$+0.01$	$+1.51$
-1.64	-0.18	+0.5	+1.01	$+0.8{ }_{+}$	-0.03
$+0.07$	$+0.46$	+0.63	$+2.18$	-0.84	+0.06
-1.35	$+0.26$	+1.25	- 1.44	-0.06	+0.14
$+0.35$	+0.33	-0.4.5	-2.24	-0.54	-0.36
-0.75	+1.35	$+0.72$	-0.36	+0.77	$+0.05$
+1.04	-0.23	+1.18	-0.01	+0.71	-0.33
$+0.30$	$+0.21$	-0.30	+0.56	-0.18	-0.32
-0.59	$+0.91$	-0.24	+0.46	+0.35	+0.08
-1.18	$+0.83$	-0.13	-0.11	$+0.01$	+0.22

The errors in the last series of comparisons of the yard $[F \cdot \gamma]$ are unusually large. Particular attention was drawn to the irregularity of the results while the observations were in progress, but no cause could be assigned, unless it might possibly be that the stone piers were of a slightly different temperature to that of the air of the room. It will be seen that the three first observations have positive crrors while the next three have negative errors. In the first three the bar $\boldsymbol{O} \mathbf{T}$ was next the piers, but in the next tbree $\mathrm{Y}_{\text {ss }}$ was next the piers. The thermometer readings, bowever, do not indicate any change in the temperatures that would account for the apparent change of results. The cause of discrepancy, whatever it be, seems to vanish at the end of the series.

From equations (5) we find the reciprocals of the weights of the several determinations as follows:-

$$
\begin{array}{r}
x^{\prime} \ldots \ldots .0 .03341 \tag{8}\\
x, \ldots .0 .03405 \\
x^{\prime}+x . \ldots .0 .08492 \\
y \ldots
\end{array}
$$

The sum of the squares of the residual errors of the 80 equations from which these quantities were obtained (being the errors in the first four columns of the last Table) is 54.65 . Hence the probable error of a single comparison is

$$
\begin{equation*}
\pm .674 \sqrt{\frac{54.65}{80-3}}= \pm 0.508 \tag{9}
\end{equation*}
$$

The probable errors of the several determinations are therefore

$$
\begin{align*}
x_{1} \ldots \pm \pm 0.568 \sqrt{.03341} & = \pm 0.104 \tag{10}\\
x, \ldots \pm 0.568 \sqrt{.03405} & = \pm 0.105 \\
x^{\prime}+x, \ldots \pm 0.568 \sqrt{.08492} & = \pm 0.105 \\
y \ldots \pm 0.568 \sqrt{.000162} & = \pm 0.0072
\end{align*}
$$

The sum of the squares of the 40 errors of the comparisons of $[\gamma \cdot \delta]$ is $10 \cdot 5 \mathrm{I}$, consequently the probable error of a comparison is

$$
\begin{equation*}
\pm 0.674 \sqrt{\frac{10.51}{40-1}}= \pm 0.350 \tag{II}
\end{equation*}
$$

and the probable error of the mean of the whole

$$
\begin{equation*}
\frac{ \pm 0 \cdot 350}{\sqrt{40}}= \pm .055 \tag{12}
\end{equation*}
$$

We have therefore

$$
\begin{equation*}
[\gamma \cdot \delta]=[\tau \cdot f]+3 \cdot 40 \pm 0 \cdot 055 \tag{13}
\end{equation*}
$$

Also, for $t=62^{\circ}$, see page 72 .

$$
[\tau \cdot f]=\frac{474}{3600} \mathbf{Y}_{35}-3 \cdot 24 \pm 0.127
$$

therefore,

$$
\begin{equation*}
\lceil\gamma \cdot \delta]=\frac{4.74}{3600} Y_{55}+0.16 \pm 0.197 \tag{14}
\end{equation*}
$$

Adding to this the sum of equations (6), viz. :-

$$
\begin{equation*}
[\alpha \cdot \gamma]=2 Y_{55}+8.29 \pm 0.165 \tag{15}
\end{equation*}
$$

we get for the entire length of the bar-

$$
[\alpha \cdot \delta]=\frac{7674}{3600} \mathbf{Y}_{55}+8.45 \pm 0.214
$$

so that the length of the Ordnance Toise in terms of \mathbf{Y}_{55}, both being at 62°, is

$$
\begin{equation*}
\mathbf{T}_{\circ}=(2 \cdot 13167512 \pm \cdot 00000021) \mathbf{Y}_{55} \tag{16}
\end{equation*}
$$

2.

A series of measures of the space between the lines on the contact apparatus when the two parts are brought together was also made with the micrometers i ind K . In each measure the focus was re-adjusted, and the contacts renewed. The results are given in the following Table, each number being the mean of three micrometer readings.

Micrometer H.				Micrometer K.		
Left Line.	Right Line.	Nif.	Left Line.	Might Line.	Diff.	
1366.17	654.83	711.34	657.67	1365.53	707.86	
1364.13	652.50	711.63	659.25	1366.57	707.30	
1359.83	650.03	709.80	659.40	1368.00	708.60	
1358.03	647.33	710.70	657.30	1366.13	708.83	
1356.90	646.63	710.27	658.60	1366.50	707.90	

The mean of the measures by H is $710 \cdot 75$, which in millionths of the yard $=564.97$; and the mean of the measures by K is $708 \cdot 10$, which in millionths of a yard $=565 \cdot 06$. The mean of these, $565 \cdot 04$, may be taken, when compared with the value (17), page 133, otherwise obtained, as a satisfactory proof that the contact apparatus has not undergone any change. We shall not make any further use of this result, retaining the value given in the Section on the Prussian Toise.

3.

Rather unfortunately for the comparisons of the Toise No. i I with che Ordnance Toise, the temperature commenced to fall just after September 29, falling 5° in the next week. Unfortunately, inasmuch as we have to make use of the relative expansion of the two bars to reduce our results to 62°. If $\tau_{10} \tau_{11}$ be the expansions per 1° Fahrenheit of the ' $o i s e s$ Nos. 10 and $1_{1}, \tau_{0}$ that of the Ordnance Toise

$$
\left(\tau_{11}-\dot{\tau}_{0}\right)=\left(\tau_{10}-\tau_{0}\right)-\tau_{10}+\tau_{11}
$$

Now from page 49 of the "Compte rendu des opérations pour étalonner les règles qui ont été employées ì la mesure des buses géocésiques Belges," it appears
that the expansions for 1° Centigrade of the Toises Nos. 10 and in are $o^{\prime} .009128$ and $0^{1} \cdot 009156$ respectively; that is for 1° Fahrenheit, the expansions expressed in millionths of a yard are

$$
\begin{aligned}
& \text { No. } 10 \text {. } 12 \cdot 511 \\
& \text { No. } 11 \text {. } 12 \cdot 549
\end{aligned}
$$

Let the probable errors of these quantities (not known) be $\epsilon_{10} \epsilon_{11}$.
By page 130 we see that

$$
\tau_{10}-\tau_{0}=0.268 \pm 0.008
$$

Then if τ_{10} and τ_{11} had been independently determined

$$
\tau_{11}-\tau_{0}=0.306 \pm \sqrt{\varepsilon_{10} 0^{2}+\varepsilon_{11}^{2}+(.008)^{2}}
$$

Twenty-five comparisons were olstained on September 30 and October 1, 3, 4, 5, 6, 7, 8, at which time the temperature had fallen to $53^{3} \cdot 9$. As it was very desirable from the shortness of the time in which the comparisons were to be made, to have all the circumstances varied as much as possible, the bars were frequently dismounted in the evenings and the adjustments renewed previous to the next morning's observations.

In order to ensure the non-existence of a constant error in a series of observations of this kind, the following points require to be attended to :-
I. The axes of rotation of the microscopes to be vertical.
2. The outer foci of the microscopes to be in a horizontal line.
3. Ordnance Toise to rest symmetrically on its rollers.
4. The supporting rollers of the Belgian Toise to be in a straight line.
5. The toise to lie symmetrically on them.
6. The steel needles of the contact apparatus to be horizontal.
7. Point of contact to be on the horizontal diameter of the circular terminal disk of the toise.
8. Point of contact to be on the vertical diameter of the same.
9. Each piece of the contact apparatus to be level transversely.
10. Care to be taken that no partical of dust intervenes at the contacts.
II. The bars to be adjusted to distinct focus.
12. The bars to take alternately the inner and outer positions.

If any of these adjustments should remain unaltered during the series, there might be room to fear a possible constant error; and on the other hand the more frequently they are renewed the more confidence may be placed in the results. If it were practicable it would be well that they were all renewed previous to each comparison, but the time that would be required for this purpose renders it impracticable; hesides which the mere presence of the observer for the length of time requisite for correcting many adjustments produces a considerable disturbance in the length of the bars, so that they require to be left alone for many hours to settle to their natural lengths.

The manner in which the adjustments were actually renewed, will be seen from the notes following the Table subjoined, which contains the results of the twenty-five comparisons.

No.	Date.	Temp.	Ordnance Toise.	Belgian 'Toise.	Difference in Micrometer Divisions.	$\mathbf{T}_{11}-\mathbf{T}_{0}$
	1864:					
]	Scpt. 30	$58 \cdot 94$	$1130 \cdot 54 h+1129.00 k$	874.82 $h+871.23 k$	$255.72 h+257.77 k$	$408 \cdot 97$
2		$58 \cdot 92$	$1128.27 h+1131.50 h$	$874.07 h+872 \cdot 70 k$	$254 \cdot 20 h+258.80 h$	$408 \cdot 59$
3	Oct. 1	$58 \cdot 41$	$1132.75 h+1129.95 k$	$875.43 h+873.8+k$	257.32h+256.11 k	408.92
4	, "	$5^{8 \cdot 43}$	$1130.77 h+1132.57 k$	$873.55 h+876.02 h$	$257.22 h+256 \cdot 55 k$	409.19
5	" \quad,	$5^{8 \cdot 37}$	I130.12h+1133.58	$875.08 h+875.55 h$	$255.04 h+258.03 h$	408.64
6	3	57.04	II $3+.80 h+1135 \cdot 30 k$	$878.03 h+879.22 h$	$256 \cdot 77 h+256.08 h$	$408 \cdot 46$
7	", "	57.01	I135.97h+1134.55 ${ }^{1}$	$878.80 h+877.63 k$	$257 \cdot 17 h+256.92 k$	409.45
8	" "	57.01	$1137.18 h+1135.02 k$	$877.63 h+879.77 h$	$259.55 h+255 \cdot 25 k$	410.01
9	" ",	57.02	$1138.07 h+1133.10 k$	$880.27 k+877.28 k$	$257.80 h+255.82 k$	409.07
10	4	56.26	$113^{8.82 h+1137.88 h}$	$882.63 h+883.57 k$	$256 \cdot 19 h+254 \cdot 31 k$	$406 \cdot 58$
11	" ,	$56 \cdot 27$	$1137.92 h+1138.47 k$	$883.70 h+882.93 h$	$254.22 h+255 \cdot 54 k$	406.00
12	" "	$56 \cdot 20$	II $36.38 h+1139 \cdot 92 h$	886.18 $h+879.87 h$	$250 \cdot 20 h+260.05 h$	$406 \cdot 40$
13	"	56.15	113 ${ }^{6.40 h+1139.25 k}$	$882.88 h+882.72 k$	$253.52 h+256.53 k$	406.23
14	5	55.16	$1144.63 h+1139 \cdot 42 k$	$887.55 h+886.15 k$	$257.08 h+253.27 h$	$406 \cdot 46$
15	" , "	$55 \cdot 26$	II4I.05 $h+1142.02 k$	$885.75 h+884.93 h$	$255.30 h+257.09 h$	408.10
16	", "	55	$1142 \cdot 77 h+1142 \cdot 33 k$	$886.12 h+887.57 k$	$256.65 h+254.76 h$	407.31
17	3	55.10	$1141.98 h+1143 \cdot 28 h$	888.12 $h+885 \cdot 30 k$	$253.86 h+257.98 k$	407.66
18	6	54.39	II $+3 \cdot 3^{8} h+1 \mathrm{I}+2 \cdot 47 h$	$886 \cdot 20 h+887 \cdot 32 h$	$257 \cdot 18 h+254.65 k$	407.64
19	,, "	$54 \cdot 36$	$1145.03 h+1141.25 h$	$887.45 h+886 \cdot 05 h$	$257.58 h+255.20 h$	$408 \cdot 40$
20	,	54.28	$1142 \cdot 05$ + II $4.3 .33 h$	$886 \cdot 77 h+888 \cdot 45 h$	$255 \cdot 28 h+256.88 k$	407.91
21	7	53.89	$11+7.20 h+1142 \cdot 57 h$	888.17 $h+891 \cdot 08 k$	$259.03 h+251.49 h$	406.59
22	, "	$53 \cdot 9+$	$1148 \cdot 35 h+11+1 \cdot+7 h$	$888.90 h+890.00 k$	$259 \cdot 45 h+251 \cdot 47 k$	406.91
23	-	54.09	$11+4 \cdot 12 h+1144.30 k$	$889 \cdot 27 h+887 \cdot 20 k$	${ }^{2} 54.85 h+257.10 k$	$407 \cdot 75$
24	8	53.88	$1127.37 h+1129.28 h$	$872.02 h+872.85 k$	$255 \cdot 35 h+256 \cdot 43 k$	407.61
25	" \quad,	53.92	$1128 \cdot 30 h+1128 \cdot 33 k$	$871.43 h+873.08 h$	$256.87 h+255.25 h$	407.88

Temperatures corrected for errors of thermometers.
(I.$)$ Bars re-adjusted to focus. Contacts renewed.
(3.) Bars re-adjusted to focus. Contacts renewed.
(5.) Microscopes re-levelled and re-adjusted. Contact pieces re-levelled, re-adjusted.
(6.) Bars re-adjusted to focus. Contacts renewed.
(7.) Bars re-adjusted to focus.
(8.) Bars re-adjusted to focus. Contacts renewed.
(9.) Bars dismounted and interchanged. Rollers of Belgian Toise re-adjusted into line. Bars re-adjusted to focus. Contacts renewed.
(ı.) Contact pieces re-levelled. Focus of bars re-adjusted.
(II.) Bars re-adjusted to focus.
(12.) Microscopes re-levelled.
(13.) Bars dismounted and interchanged. Rollers of Belgian Toise re-adjusted into line. Contact pieces re-levelled and adjusted transversely. Bars re-adjusted to focus.
(14.) Bars re-adjusted to focus. Contact pieces re-levelled and adjusted in vertical height.
(15.) Bars re-adjusted to focus.
(16.) Bars re-adjusted to focus.
(17.) Bars dismounted and interchanged. Contact pieces levelled and adjusted transversely. Bars adjusted to focus.
(18.) Bars re-adjusted to focus.
(19.) Contacts renewed.
(20.) Bars dismounted and interchanged. Rollers of Belgian Toise re-adjusted into line. Contact pieces re-adjusted and levelled.
(21.) Bars re-adjusted to focus.
(22.) Bars re-adjusted to focus.
(23.) Microscopes re-levelled. Focus re-adjusted and contacts renewed.

The several adjustments here enumerated were made at the close of the comparisons against which they are written. In renewing the contacts, the steel needle of each piece was drawn back (against its spring) from the bar, and both the contact piece and the end of the Toise very gently rubbed with a piece of a fine kid glove.

The following Table shows the corrections for temperature, taking 0.306 as the excess of the expansion of the Belgian Toise above the Ordnance Toise for I° Fabrenheit.

$\begin{aligned} & \text { Observed } \\ & \text { differences of } \\ & \text { Length. } \end{aligned}$	$\begin{gathered} \text { Correction } \\ \text { for } \\ \text { Temperature. } \end{gathered}$	Difference of Leagh at 62'.	Errors.
408.97	0.94	409.91	+0.20
$408 \cdot 59$	0.94	409.53	-0.18
408.92	I-10	410.02	+0.31
$409 \cdot 19$	I. 09	$410 \cdot 28$	+0.57
408.64	I-11	$409 \cdot 7.5$	+0.0+
$408 \cdot 46$	$1 \cdot 52$	$409 \cdot 98$	+0.27
$409 \cdot 45$	I. 53	410.98	$+1.27$
410.01	1.53	411.54	+1.83
409.07	1.52	410.59	+0.88
$406 \cdot 5^{8}$	$1 \cdot 76$	$408.3+$	-1.37
406.00	I. 75	407.75	$-\mathrm{I} .96$
406.40	1.77	408.17	- 1.54
$406 \cdot 23$	I. 79	408.02	-1.69
$406 \cdot 46$	2.09	408.55	-1.16
$408 \cdot 10$	2.06	$410 \cdot 16$	+0.45
407.31	$2 \cdot 11$	$409 \cdot 42$	-0.29
407.66	$2 \cdot 11$	$409 \cdot 77$	+0.06
$407 \cdot 64$	$2 \cdot 33$	$409 \cdot 97$	+0.26
408.40	$2 \cdot 34$	$410 \cdot 74$	$+\mathrm{x} .03$
$407 \cdot 91$	$2 \cdot 36$	$410 \cdot 27$	+0.56
$406 \cdot 59$	2.48	409.07	$-0.6+$
406.91	$2 \cdot 47$	$409 \cdot 3^{8}$	-0.33
407.75	$2 \cdot 42$	$410 \cdot 17$	$+0.46$
407.61	2.48	410.09	$+0.38$
407.88	2.47	$410 \cdot 35$	+0.64

4.

The mean of the corrected differences of length is $409 \cdot 71$ and the sum of the squares of the differences of the individuals with the mean result is 21.612 which would give the probable error of a single observation or comparison as ± 0.640. But this is greater than the actual probable error of a comparison, as it is atfeeted by the probable error of the assumed rate of relative expansion.

But in consequence of some of these comparisons being further from the normal temperature than others, it is not correct to take the simple mean of the third column as the final result. If we denote by a the observed differences of length, the differences of the corresponding temperatures from 62° by α, and the difference of expansions of the Belgian Toise and Ordnance Toise by x; then the results for the difference of leugth y at 62° are

$$
\begin{align*}
& y=a_{1}+\alpha_{1} x \tag{เ7}\\
& y=a_{2}+\alpha_{2} x \\
& y=a_{3}+\alpha_{y} x \\
& \vdots \\
& \vdots \\
& y=a_{n}+\alpha_{n} x
\end{align*}
$$

In order to obtain the most probable value of y we shall multiply these values by a series of multipliers $\lambda_{1} \lambda_{2} \ldots \ldots \lambda_{n}$ such as will give a resulting value of y with the minimum probable error : the sum of such multipliers to be unity. If E_{i} be the actual error of the measured quantity a_{i} and E_{0} the actual error of the assumed relative expansion x, then the error of the adopted result for y is

$$
\begin{equation*}
\lambda_{1} \mathrm{E}_{1}+\lambda_{2} \mathrm{E}_{2}+\ldots \lambda_{n} \mathrm{E}_{n}+\left(\alpha_{1} \lambda_{1}+a_{2} \lambda_{2}+\ldots \alpha_{n} \lambda_{n}\right) \mathrm{E}_{0} \tag{18}
\end{equation*}
$$

Writc V for the coefficient of E_{0} so that

$$
\begin{equation*}
\mathbf{V}=\alpha_{1} \lambda_{1}+\alpha_{2} \lambda_{2}+\ldots \alpha_{n} \lambda_{n} \tag{19}
\end{equation*}
$$

then the square of probable error of the adopted result for y will be

$$
\begin{equation*}
e^{2}\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\ldots \lambda_{n}^{2}\right)+V^{2} \varepsilon^{2} \tag{20}
\end{equation*}
$$

where e is the probable error of a single comparison, ε the probable error of our assumed rate of relative expansion. Now this quantity is to be a minimum, subject to the condition

$$
\begin{equation*}
\lambda_{1}+\lambda_{2}+\lambda_{3}+\ldots \lambda_{n}=\mathrm{I} \tag{2I}
\end{equation*}
$$

Differentiating these two equations, we have

$$
\begin{aligned}
& 0=\left(e^{2} \lambda_{1}+\varepsilon^{2} V \alpha_{1}\right) d \lambda_{1}+\left(e^{2} \lambda_{2}+\varepsilon^{2} V \alpha_{2}\right) d \lambda_{2}+\cdots \cdot \cdot\left(e^{2} \lambda_{n}+\varepsilon^{2} V \alpha_{n}\right) d \lambda_{n} \\
& 0=\quad d \lambda_{1}+d \lambda_{d} \cdot \cdots \cdots \cdots \cdot \cdots \cdot \cdot+d \lambda_{n}
\end{aligned}
$$

from which

$$
\begin{align*}
& e^{2} \lambda_{1}+\varepsilon^{2} V \alpha_{1}=C \tag{22}\\
& e^{2} \lambda_{2}+\varepsilon^{2} V \alpha_{2}=C \\
& e^{2} \lambda_{3}+\varepsilon^{2} V \alpha_{3}=C \\
& \cdot \\
& \cdot \\
& \cdot \\
& e^{2} \lambda_{n}+\epsilon^{2} V \alpha_{n}=C
\end{align*}
$$

The sum of these equations gives

$$
\begin{equation*}
e^{2}+\epsilon^{2} V(\alpha)=n \mathrm{C} \tag{23}
\end{equation*}
$$

and if we multiply them by $\alpha_{1} \alpha_{2} \cdot \cdot \cdot \cdot \alpha_{n}$ respectively, and add, we get

$$
\begin{equation*}
\epsilon^{2} V+\varepsilon^{2} V\left(\alpha^{2}\right)=C(\alpha) \tag{24}
\end{equation*}
$$

eliminating C, we get

$$
\begin{equation*}
V=\frac{\frac{(\alpha)}{n}}{1+\frac{\varepsilon^{2}}{e^{2}}\left[\left(\alpha^{2}\right)-\frac{(\alpha)^{2}}{n}\right]} \tag{25}
\end{equation*}
$$

and further

$$
\begin{align*}
& \lambda_{1}=\frac{1}{n}+\frac{\varepsilon^{2}}{e^{2}}\left[\frac{(\alpha)}{n}-\alpha_{1}\right] \mathrm{V} \tag{26}\\
& \lambda_{2}=\frac{1}{n}+\frac{\varepsilon^{2}}{e^{2}}\left[\frac{(\alpha)}{n}-\alpha_{2}\right] \mathrm{V} \\
& \lambda_{3}=\frac{1}{n}+\frac{\varepsilon^{2}}{e^{2}}\left[\frac{(\alpha)}{n}-\alpha_{3}\right] \mathrm{V} \\
& \cdot \\
& \cdot \\
& \cdot \\
& \lambda_{n}=\frac{\mathrm{I}}{n}+\frac{\varepsilon^{2}}{e^{2}}\left[\frac{(\alpha)}{n}-\alpha_{n}\right] \mathrm{V}
\end{align*}
$$

These are the multipliers which render the probable error a minimum. The sum of their squares is

$$
\lambda_{1}^{2}+\lambda_{2}^{2}+\cdots \lambda_{a}^{2}=\frac{1}{n}+\left[\left(\alpha^{2}\right)-\frac{(\alpha)^{2}}{n}\right] \frac{\frac{s}{4}_{4}^{e^{4}}}{} V^{2}
$$

Hence for the square of the probable error we have

$$
\begin{align*}
& \frac{e^{3}}{n}+\epsilon^{2}\left[\left(\alpha^{2}\right)-\frac{(\alpha)^{2}}{n}\right] \frac{\varepsilon^{2}}{e^{2}} V^{2}+\varepsilon^{2} V^{2} \\
= & \frac{\varepsilon^{2}}{n}+\epsilon^{2} V^{2}\left\{I+\frac{\varepsilon^{2}}{e^{2}}\left[\left(\alpha^{2}\right)-\frac{(\alpha)^{2}}{n}\right]\right\} \\
= & \frac{e^{2}}{n}+\frac{\varepsilon^{2} \frac{(\alpha)^{2}}{n^{2}}}{I+\frac{\varepsilon^{2}}{e^{2}}\left[\left(\alpha^{2}\right)-\frac{(\alpha)^{2}}{n}\right]} \tag{27}
\end{align*}
$$

And this is a smaller quantity than would result from any other system of multipliers.
Now the quantity s is not given. We may, however, get an estimate of its amount probably not very far from the truth, by an examination of the probable errors of the determinations of expansions of other bars. Referring to a previous section, we have obtained for the expansion of the bar $1 \mathrm{O}_{1}$ the value $21.055 \pm .089$, and for $1 \mathrm{O}_{2}$ the value 21.400 ± 050 (see puge 79). Now in this last case, the probable error of the determination is about $\frac{1}{40}$ th part of the amount of the expausion. Again, at page 49 of the Account of the Russian Meridian Arc, Vol. I., we have the probable errors of the determinations of the expansions of the four Standard Bars N, P, F, H, and taking the mean we get this, that the probable error of the determined amount of expansion is $\frac{1}{5}$ th of that amount. Taking this as a guide, as the expausion of either toise is about 12.5 , the probable error of the determination would be $\pm .03$, and if the determinations of the expansions of the two toises were independently made the probable error of the relative expansion would be $\sqrt{(.03)^{2}+(.03)^{2}}= \pm .04$. In adopting this value we shall not err very materiully from the truth; that is, not so much as to be misguided.

If further we take for the value of $e \pm 0.60$, then

$$
\begin{equation*}
\frac{\varepsilon^{2}}{e^{2}}=\frac{1}{225} \tag{28}
\end{equation*}
$$

This gives for the value of V

$$
V=4.577
$$

Forming now the values of λ and multiplying each result by the corresponding multiplier, we have finally

$$
\begin{equation*}
y=409 \cdot 75 \tag{29}
\end{equation*}
$$

differing but very slightly from the mean, which was found to be $409 \cdot 71$.
By equation (27) the probable error of our result is

$$
\pm \frac{e}{\sqrt{n}}\left\{\mathrm{I}+\frac{\frac{1}{225} \frac{(\alpha)^{2}}{25}}{1+\frac{1}{225}\left[\left(\alpha^{2}\right)-\frac{(\alpha)^{2}}{n}\right]}\right\}^{\frac{1}{2}}= \pm \cdot 40 \epsilon
$$

Now we have secn that e is something less than $\pm \cdot 64$, so that our probable result may be set down as $\pm \cdot 25$.

Hence

$$
\begin{equation*}
\mathbf{T}_{11}=\mathbf{T}_{0}-\sigma+409.75 \pm 0.25 \tag{30}
\end{equation*}
$$

Where \mathbf{T}_{11} is the length of the Belgian Toise at 62° Fahr., \mathbf{T}_{0} that of the Ordnance Toise, and σ the value of the space on the contact apparatus.

5.

The value of σ is given at page 134 as

$$
\sigma=565 \cdot 85 \pm \cdot 108
$$

and for T_{0} we bave found

$$
\mathbf{T}_{0}=(2 \cdot 13167512 \pm 000000214) \mathbf{Y}_{65}
$$

consequently

$$
\mathbf{T}_{11}=2 \cdot 13151902 \mathbf{Y}_{3}
$$

with a probable error, to be regarded only as approximate, of

$$
\sqrt{(.214)^{2}}+(.108)^{2}+(.25)^{2}= \pm 0.35
$$

Therefore, finally, at the temperature of 62° we have the length of the Belgian Toise

$$
\begin{equation*}
\mathbf{T}_{11}=(2 \cdot 13151902 \pm \cdot 00000035) \mathbf{Y}_{\mathrm{b5}} \tag{31}
\end{equation*}
$$

XIII.

COMPARISONS OF STANDARD YARDS.

1.

The copies of the National Standard Yard assigned to the Ordnance Survey areNo. 29 Bronze.
No. 55 Swedish Iron B.
It is stated in the official report that the temperatures at which they are exactly one yard, are as follows :-

No. 29 at $61^{\circ} \cdot 5 \mathrm{I}=$ National Staudard Yard.
No. 55 at $61^{\circ} .93=$ National Standard Yard.
these values being the results of the comparisons made by the late Mr. Sheepshanks.
Of these two bars, the iron bar No. 55 appears to be best determined. According to information kindly supplied by the Astronomer Royal, No. 55 was compared directly with Bronze No. 28 (the Standard) on March 21, 22, August 10, 11, 12, 13, 18, 1853 ; Bronze 29 was compared on five days; some of the comparisons were with Bronze 28 direct, and some indirectly through another bar, Bronze No. 12.

That a standard bar does retain an invariable length at a stated temperature is a proposition not altogether established, though it may perhaps be said that in very few cases have actual suspected alterations or fluctuations of length been sufficiently proved. In the very bar chosen by Mr. Shecpshanks as the representative of the national unit, we have, for instance, strong cvidence of a temporary alteration of length. In the ten feet standard of the Ordnance Survey, there is much reason to doubt the constancy of the coetticient of expansion, and if this be uncertain, it cannot be said that the length of the bar at 62° is invariable. In the Report* of the Comparisons of Standard Bars in Brussels, 1854, we find similar instances of apparent changes both of length and of rates of expansion, pp. 105, 106, 126.

How far these discrepancies may be due to errors of observation and faulty methods of comparison, it is not easy to say; but the fact of their having been observed at all renders it very desirable to re-compare some of the Copies of the Standard Yard, with a view of ascertaining whether the differences obtained at present agree with those assigned by Mr. Sheepshanks ten years ago.

[^3]Three copies were accordingly borrowed from the Astronomer Royal．They are designated－

$$
\begin{array}{ll}
\text { No. 65. } & \text { Cast Steel A } \\
\text { No. 66. } & \text { Cast Steel B } \\
\text { No. 67. } & \text { Cast Steel C }
\end{array}
$$

and their lengths as assigned by Mr．Sheepshanks－
No． 65 at $62^{\circ} \cdot 22=$ National Standard Yard．
No． 66 at $62^{\circ} \cdot 11=$ National Standard Yard．
No． 67 at $62^{\circ} \cdot 47=$ National Standard Yard．
Of these copies，No． 66 appears to be the best determined；it was compared（according to information supplied by Mr．Airy）on 13 days with Bronze 28 direct．No． 65 was compared on one day only，and 67 on two days；in both these cases the comparisons were not directly with Bronze 28 but indirectly through an iron bar（Low Moor B）whose length was well determined．

Referring to the＂Account of the Construction of the new National Standard of Length and its Principal Copies，＂we find that the excess of the lengths of Cast Steel B and Swedish B above Bronze 28 are（p．57）

No．66．Cast Steel $\mathcal{B}=$ Bronze $28-o^{r} .006565-o^{r} .03730370(t-62)$
No．55．Swedish Iron $2=$ Bronze $28+0.004267-0.03350280(t-62)$

$$
\text { where } I^{r}=o^{\text {iur. }} \cdot 003587
$$

In the same place we find

$$
\text { Brass } 2=\text { Bronze } 28+o^{r} .082740+0^{r} .00072975(t-62)
$$

It does not appear from the＂Account＂that the absolute expansion of Bronze 28 was ever determined．It appears to have been assumed to be the same as that of another Bronze Bar No．12，of which the absolute expansion was deterinined by direct experiment． But we have the absolute expansion of the bar desiguated Brass 2 by direct experiment （pages 48,49 ），it was found to be

$$
0^{\top} .09601 \text { : for } 1^{\circ} \text { Fahrenheit. }
$$

From this and from the relative expansions shown above with reference to Bronze 28， we get for the expansion of Cast Steel B， 0.057977 ，and for Swedish Iron R， 0.061777 ，so that the absolute lengths of these bars at the temperature t are，if we put ${ }^{9}$ to represent a tille yard，

No．66．．．Cast Steel B＝習－ $0^{r} .006565+o^{r} .057977(t-62)$
No．55．Swedish Iron $\mathbf{B}=$ 翏 $+0.004267+0.061777(t-62)$
or，if we express the small quantities in millionths of the yard－
No．66．．．Cast Steel $\mathbf{B}=\mathbf{7}-0.65+5.7768(t-62)=\mathbf{Y}_{60}$
No．55．Swedish Iron $B=$ 朿＋0．43＋6．1555 $(t-62)=Y_{65}$
We find at page 59，that at 62° the length of Bronze 29 is in excess 4.60 divisions； at page 60，that Cast Steel A at 62° is in excess－ 1.28 divisions，and Cast Stecl \mathbf{C} in excess by $-2 \cdot 70$ divisions．Expressing these differences in millionths of a yard，we have for the lengths at 62°

No．65．Cast Steel $A=$ 習 $-1.28=\mathbf{Y}_{\text {05 }}$
No．67．Cast Steel $\mathbf{C}=$ 鹏 $-2.69=\mathbf{Y}_{\text {07 }}$
No．29．Bronze $=$ 贯 $+4.58=\mathbf{Y}_{20}$

2.

In order to determine not only the present differences of length of these five bars but their differences of expansion, observations were made upon them, both at low temperatures, 38° to 40°, and in the vicinity, as near as practicable, of the normal temperature of 62°.

The three bars, 66, 55, 67, were compared on two days in February, 26th, 27th, being visited three times cach day. The three bars, 65, 55, 29, were compared on lebruary 29th and March 1 , three times on the former and twice on the latter day. 'The order of observation and number of micrometer readings were as indicated in the following 'Table :-

besides the reading of four thermometers in the bars at the commencement and close of the visit.

In ench case the three bars were placed (in line) in the box of the ten feet bars. Each bar rested on two freely-moving rollers, which were capable of being raised or lowered by small quantities for accurate focal adjustment. These supporting rollers were in each case nine inches right and left of the centre of the bar. As indicated in the above Table, the three bars were brought under the microscopes successively, and observed in the direct order, α, β, γ, and then a second time in the reverse order, γ, β, a.

The long box not being suited to these comparisons, a box of mahogany was specially made, before the comparisons at the normal temperature, for the reception of three standard yards lying parallel to one another, and with their centres opposite. The distance apart of the outer yards was 2.80 inches, which left sufficient room for a third yard to lie between these. Each yard was supported on a pair of rollers 18 inches apart. In order to secure for the bars perfect freedom from any constraint, the rollers were two iuches in diameter, and revolved very freely on their asles, which were of steel working in steel Y's. By a special construction each of these rollers admitted of being moved in a strictly vertical plane by means of a slow motion screw working from below the box. 'Thus the observer was enabled to make his focal adjustments with the greatest nicety and the greatest ease. The cover of the box was provided with apertures for the proper reading of the bars and thermometers. The bars were laid on a slope towards the light, that is, their upper surfaces were inclined at an angle $\tan ^{-1} \frac{1}{8}$ away from the observer; the rollers being in the form of frustra of cones, and having flanges to prevent the bars slipping off.

The inner and the outer bar had each two thermometers, which were read as usual at the commencement and close of every visit. The inner and outer bars were systematically
interchanged, so that each was as often in the one position as in the other: thus, any difference of temperature owing to position is climinated in the mean. Further, every comparison is affected with a differcnt error, if it be sensible, of focal adjustment. The comparisons at 62° were conducted in exactly the same manner as described for those at the low temperature, with this exception, that two readings only of each microscope were taken in place of three, so that the small Table on page 153 will apply to these comparisons if we alter the numbers 3 into 2 .

The bars 66, 55, 67, were compared on the following days, July 8, 9, I1, 12, 13, 14, 15, 22, 23: twenty comparisons or visits. The bars 65, 55, 29, were compared on July 15, 16, 18, 19, 20, 21,22 : twenty comparisons.

In the following Tables the results are given; each line being the result of one comparison. The first column contains the date; the second contains the mean of eight thermometer readings corrected for the errors of the thermometers; the third, fourth, and fifth contain the micrometer measures, expressed in micrometer divisions, h and k being the values of one division in the micrometer microscopes H and K respectively.

Comparisons of Standard Yards.

Nos. 66, 55, 67.

Date,	Mean Temperature.	\mathbf{Y}_{60}	\mathbf{Y}_{65}	$\mathbf{Y}_{6 \%}$
1864.				
February 26	$3^{8.26}$	$9 \cdot 65 h+15 \cdot 76 k$	$13.46 h+22.88 k$	$6.72 h+19 \cdot 10 k$
" \quad	$3^{88} 34$	$19.56 h+4.79 k$	$21.50 h+12.45 k$	$15.80 h+7.58 k$
3	$38 \cdot 43$	$12.45 h+10.95 k$	$17.82 h+15.18 h$	$17.90 h+5.28 k$
27	$3^{8 \cdot} 3^{8}$	$12.88 h+11.00 h$	$14.80 h+18.66 k$	${ }^{15} 515 h+8.81 h$
", "	38.54	$11.15 h+13.92 h$	$18.00 h+15.52 h$	$8.35 h+16.70 k$
	38.63	$10.20 h+13.68 k$	$9.30 h+24.03 k$	$14.43 h+9.95 k$
July	62.59	$21.08 k+20.80 k$	$21.65 h+21.98 k$	$22.85 h+20.30 k$
", "	62.71	$17.68 h+22.10 k$	$20.63 h+18.60 h$	$20.03 h+20.88 k$
" "	62.89	$19.40 h+19.43 h$	$21.50 h+17.40 h$	19.50 $h+20.75 k$
" "	63.04	$20.60 h+17.43 h$	$18.08 h+20.40 h$	$18.65 h+21.50 k$
" 9	62.90	$20.08 h+18.20 k$	$21-83 h+18.03 h$	$21.15 h+20.28 k$
	62.99	$18.43 h+20.63 k$	$18.15 h+20.93 h$	$18.03 k+21.93 k$
11	62.77	$17.88 k+23.78 k$	$16.98 h+24.18 k$	$23.08 k+18.78 k$
" "	$63 \cdot 17$	$19.95 k+19.10 k$	$19.90 h+19.50 k$	$19.80 h+19.55 h$
12	63.39 62.41	$17.85 h+20.75 h$ $19.80 h+22.23 h$	$12.08 h+25.15 k$ $18.00 h+22.53 k$	$14.48 h+25.13 h$ $20.90 h+22.83 k$
12	62.41 62.49	$19.80 h+22.23 k$ $27.75 k+29.48$	$18.90 k+22.53 k$ $26.93 k+32.10 k$	$20.90 h+22.83 k$ $26.95 k+30.10 k$
", "	62.82	$24.65 h+31.60 k$	$27.60 k+28.80 k$	$29 \cdot 22 h+26 \cdot 98 h$
13	62.13	$31.58 h+27.45 h$	$28.15 h+30.95 h$	$29.18 k+29.95 k$
,	62.29	$30 \cdot 70 h+27.15 k$	$27.55 h+31.23 h$	$28.43 k+30.83 k$
14	61.82	$35 \cdot 28 h+26 \cdot 15 h$	$35.03 k+26.35 k$	$35.73 k+25.80 k$
" "	62.07	$30 \cdot 48 h+28.25 h$	$27.70 h+31.43 k$	$27.95 k+30.95 k$
15	62.39	$24.38 k+31.68 k$	$3 \cdot 33 h+25 \cdot 85 k$	$26.85 h+31.10 k$
15	61.42	$30.43 h+31.88 k$	$32 \cdot 30 h+30 \cdot 20 h$	$32 \cdot 13 k+30.78 k$
22	66.02	$35 \cdot 3^{8} h+33 \cdot 93 k$	$34.53 k+33.32 k$	$36.33 k+32.82 k$
23	65.63	$36.93 k+32 \cdot 92 k$	$34.83 h+34.65 k$	$36.88 h+32.40 k$

Temperatures correctod for errors of thermometers.

Comparisong of Standard Yards.
Nos. 65, 55, 29.

Date.	$\begin{gathered} \text { Mean } \\ \text { Temperature. } \end{gathered}$	\mathbf{Y}_{6}	$\mathbf{Y}_{\text {ss }}$	$\mathbf{Y}_{\text {29 }}$
1864.	-			
February 29	39.21	$9.00 h+9.40 k$	$9 \cdot 52 h+19.53 k$	$50.96 h+74.88 k$
" "	39.52	$9.73 h+8.45 h$	$13.98 h+13.40 h$	$57.53 h+65.85 k$
March	39.73	$8.26 h+7.62 k$	$11.90 h+13.88 k$	$55.63 h+65.28 h$
March	40.02	$7.46 h+8.05 k$	$8 \cdot 20 h+16.65 k$	$61.90 h+5.5 .20 h$
	40.23	$1.63 h+12.17 k$	$14.18 h+8.87 h$	$69.00 h+47.87 h$
July $\quad 15$	62.50	$29.03 h+28.08 h$	$27.48 k+28.05 k$	$22.73 h+28.73 k$
16	61.97	$28.98 h+32.03 h$	$27.20 h+32.03 k$	$27.33 h+29.75 h$
, "	62.71	$29.83 k+28.05 k$	$29.55 h+26.73 h$	$22 \cdot 33 h+28.33 k$
18	63.10	$27.00 h+28.75 k$	$2.570 h+28.25 k$	$20 \cdot 15 h+26.33 k$
18	63.78	$23.38 h+29.78 k$	$19.80 h+31.00 k$	$18.50 h+22.88 k$
" "	$64 \cdot 20$	$25 \cdot 10 h+26.33 h$	$20.90 h+28.28 k$	$19.55 h+18.45 k$
" "	64.54	$20.73 h+27.50 h$	$22.90 h+25.15 k$	$1.510 h+19.33 k$
19	64.82	$27 \cdot 10 h+21.70 h$	$26.20 h+19.55 k$	$13.63{ }^{4}+16.85 k$
19	64.91	$22.13 h+24.75 k$	$20.03 k+25.08 k$	$14.45 h+16.25 h$
20	$65 \cdot 19$	$22.65 h+24 \cdot 18 h$	$22.38 k+23 \cdot 27 k$	$11.05 h+17.48 k$
20	65.77	$30 \cdot 18 h+40 \cdot 17 h$	$29.45 h+40.43 k$	$24.95 h+24.90 k$
" "	66.05	$36 \cdot 73 h+31.23 k$	$35 \cdot 98 h+32 \cdot 48 k$	$25.90 h+21.68 k$
" "	66.26	$34.88 h+32.27 k$	$36 \cdot 85 k+29.58 k$	$21.08 h+25.52 h$
2	66.53	$38 \cdot 18 h+27 \cdot 70 h$	$37.83 h+26.62 k$	$20.65 h+20.73 k$
21	65.33	$32 \cdot 28 h+39 \cdot 70 h$	$3+95 h+3^{8 \cdot 15} k$	$25.60 h+28.63 k$
" "	65.74	$31.00 h+39.23 k$	$3 \mathrm{I} \cdot 13 h+37 \cdot 3^{8} k$	$22.68 h+25.10 h$
" "	65.97	$31 \cdot 10 h+38 \cdot 25 k$	$29.98 h+38.60 k$	$22 \cdot 4.5 h+25 \cdot 58 k$
22	56.21	$37.80 h+29 \cdot+3 h$	$37.98 k+28.57 k$	$23.00 h+21.50 k$
22	65.78	$34 \cdot 03 h+35 \cdot 12 k$	$32 \cdot 70 k+36 \cdot 70 k$	$26.05 h+23.68 k$
" "	65.97	$27.50 h+40.58 h$	$27 \cdot 20 h+39 \cdot 80 h$	${ }^{1}+00 h+33 \cdot 5^{8} k$

3.

To reduce these observations by the method of least squares we proceed as follows : Let the excesses of the lengths of the two bars being compared with \mathbf{Y}_{55} be, at the temperature $62^{\circ}+f$, with reference to that bar

$$
\begin{aligned}
& x+f y \\
& x^{\prime}+f y^{\prime}
\end{aligned}
$$

or, if, \mathbf{Y}_{65} be the length of No. 55 at the temperature $62^{\circ}+f$ let the lengths of the other two be

$$
\begin{align*}
& \mathbf{Y}_{55}+x+f y \tag{1}\\
& \mathbf{Y}_{55}+x^{\prime}+f y^{\prime}
\end{align*}
$$

and let the distance of the zeros of the microscopes at the time of this comparison be

$$
\begin{equation*}
\mathbf{Y}_{55}+z \tag{2}
\end{equation*}
$$

Let the quantities entered in the third, fourth, and fifth columus of the Tables given above be designated a, b, c, then we have these three equations at each comparison

$$
\begin{aligned}
& \mathbf{Y}_{\mathrm{bs}}+z=\mathbf{Y}_{55}+x+f y+a \\
& \mathbf{Y}_{b 3}+z=\mathbf{Y}_{\overline{b s}}+b \\
& \mathbf{Y}_{05}+z=\mathbf{Y}_{\mathrm{bs}}+x^{\prime}+f y^{\prime}+c
\end{aligned}
$$

So there results a series of equations as follows

$$
\begin{align*}
x+f_{1} y-z_{1}+a_{1} & =0 \tag{3}\\
-z_{1}+b_{1} & =0 \\
x^{\prime}+f_{1} y^{\prime}-z_{1}+c_{1} & =0 \\
x+f_{2} y-z_{2}+a_{2} & =0 \\
-z_{2}+b_{2} & =0 \\
x^{\prime}+f_{2} y^{\prime}-z_{2}+c_{2} & =0 \\
x+f_{3} y-z_{3}+u_{3} & =0 \\
-z_{3}+b_{3} & =0 \\
x^{\prime}+f_{3}^{\prime} y^{\prime}-z_{3}+c_{3} & =0
\end{align*}
$$

and so on. Let n be the number of comparisons, then from these equations we obtain

$$
\begin{gather*}
n x+(f) y-(z)+(a)=0 \tag{4}\\
(f) x+\left(f^{2}\right) y-(f z)+(f a)=0 \\
n x^{\prime}+(f) y^{\prime}-(z)+(c)=0 \\
(f) x^{\prime}+\left(f^{2}\right) y^{\prime}-(f z)+(f c)=0 \\
x+x^{\prime}+f_{1} y+f_{1} y^{\prime}-3 z_{1}+a_{1}+b_{1}+c_{1}=0 \\
x+x^{\prime}+f_{n} y+f_{2} y^{\prime}-3 z_{3}+a_{3}+l_{2}+c_{2}=0 \\
x+x^{\prime}+f_{3} y+f_{3} y^{\prime}-3 z_{3}+a_{3}+b_{3}+c_{3}=0 \\
\vdots \\
x+x^{\prime}+f_{n} y+f_{n} y^{\prime}-3 z_{n}+a_{n}+b_{n}+c_{n}=0
\end{gather*}
$$

Eliminating the z s from the first four equations

$$
\begin{array}{r}
\frac{9}{3} n x+\frac{2}{3}(f) y-\frac{1}{3} n x^{\prime}-\frac{1}{3}(f) y^{\prime}+\frac{2}{3}(a)-\frac{1}{3}(b)-\frac{1}{3}(c)=0 \tag{5}\\
\frac{2}{3}(f) x+\frac{2}{3}\left(f^{2}\right) y-\frac{1}{3}(f) x^{\prime}-\frac{1}{3}\left(f^{\prime 2}\right) y^{\prime}+\frac{3}{3}(n f)-\frac{1}{3}(b f)-\frac{1}{3}(c f)=0 \\
-\frac{1}{3} n x-\frac{1}{3}(f) y+\frac{2}{3} n x^{\prime}+\frac{2}{3}(f) y^{\prime}-\frac{1}{3}(a)-\frac{1}{3}(b)+\frac{2}{3}(c)=0 \\
-\frac{1}{3}(f) x-\frac{1}{3}\left(f^{2}\right) y+\frac{2}{3}(f) x^{\prime}+\frac{2}{3}\left(f^{2}\right) y^{\prime}-\frac{1}{3}(a f)-\frac{1}{3}(b f)+\frac{2}{3}(c f)=0
\end{array}
$$

which contain $x x^{\prime} y y^{\prime}$ only. Let $\mathrm{P} Q \mathrm{Q} \mathrm{S}$ be the absolute terms of these equations, then

$$
\begin{array}{r}
n x+(f) y+2 \mathrm{P}+\mathrm{R}=0 \tag{6}\\
(f) x+\left(f^{2}\right) y+2 \mathrm{Q}+\mathrm{S}=0 \\
n x^{\prime}+(f) y^{\prime}+\mathrm{P}+2 \mathrm{R}=0 \\
(f) x^{\prime}+\left(f^{2}\right) y^{\prime}+\mathrm{Q}+2 \mathrm{~S}=0
\end{array}
$$

And finally

$$
\begin{align*}
& \left(n\left(f^{2}\right)-(f)^{2}\right) x+2\left(f^{2}\right) \mathrm{P}-2(f) \mathrm{Q}+\left(f^{2}\right) \mathrm{R}-(f) \mathrm{S}=0 \tag{7}\\
& \left(n\left(f^{2}\right)-(f)^{2}\right) y-2(f) \mathrm{P}+2 n \mathrm{Q}-(f) \mathrm{R}+n \mathrm{~S}=0 \\
& \left(n\left(f^{2}\right)-(f)^{2}\right) x^{\prime}+\left(f^{2}\right) \mathrm{P}-(f) \mathrm{Q}+2\left(f^{2}\right) \mathrm{R}-2(f) \mathrm{S}=0 \\
& \left(n\left(f^{2}\right)-(f)^{2}\right) y^{\prime}-(f) \mathrm{P}+n \mathrm{Q}-2(f) \mathrm{R}+2 n \mathrm{~S}=0
\end{align*}
$$

The reciprocals of the weights of the determinations $x y x^{\prime} y^{\prime}$ are, therefore,

$$
\begin{gather*}
x \ldots \frac{2\left(f^{2}\right)}{n\left(f^{2}\right)-(f)^{2}} \tag{8}\\
y \ldots \frac{2 n}{n\left(f^{2}\right)-(f)^{2}} \\
x^{\prime} \ldots \frac{2\left(f^{2}\right)}{n\left(f^{2}\right)-(f)^{2}} \\
y^{\prime} \ldots \frac{2 n}{n\left(f^{2}\right)-(f)^{2}}
\end{gather*}
$$

We have also

$$
\begin{align*}
2 \mathrm{P}+\mathbf{R} & =(a)-(b) \tag{9}\\
2 \mathrm{Q}+\mathrm{S} & =(a f)-(b f) \\
\mathrm{P}+2 \mathrm{R} & =-(b)+(c) \\
\mathrm{Q}+2 \mathrm{~S} & =-(b f)+(c f)
\end{align*}
$$

4.

Let us now apply these equations to the comparisons of the Yards. The following Tables contain in the four first columns the data, viz., f, a, b, c, the latter being reduced to the unit for small quantities, viz., the millionth of a yard; columns five, six, and seven contain the multiples $a f$ bf cf for each comparison.

Comparigons of Standard $\mathbf{Y}_{\text {abds }} \mathbf{Y}_{60} \quad \mathbf{Y}_{5 j} \quad \mathbf{Y}_{67}$

$t-62^{\circ}=f$	${ }^{\prime}$	b	c	$a \cdot f$	$b \cdot f$	$c \cdot f$
-23.74	20.25	28.96	20.58	-480.74	-687.51	-488.57
-23.66	19.37	27.03	18.61	-458.29	-639.53	-40.31
-23.57	18.63	26.28	18.44	-439.11	$-619+2$	$-43+63$
-23.62	19.02	26.66	19.07	-449.25	-629.71	-450.43
-23.46	19.97	26.69	19.96	-468.50	-626.15	- +68.26
-23.37	19.02	26.57	19.41	-444.50	-620.9+	-453.61
+ 0.59	$33 \cdot 35$	34-75	$3+36$	+-19.68	+ 20.50	+ 20.27
+0.71	31.69	31.24	$32 \cdot 58$	+ 22.50	+ 22.18	+ 2.3 .13
+ 0.89	30.93	30.98	32.06	+ 27.53	+ 27.57	+ 28.53
+ 1.04	$30 \cdot 28$	30.65	$31 \cdot 98$	+ 31.49	-- 31.88	+ 33.26
+ 0.90	30.49	31.74	33.00	+ $27.4+$	+ 28.57	+ 29.70
+ 0.99	31.11	$3^{1 \cdot 13}$	$3^{1.83}$	+ 30.80	+ 30.82	+ 31.51
+ 0.77	33.19	32.79	33.33	+ 2.5 .56	+ 25.25	+ 2.5 .66
+ 1.17	$3{ }^{1 / 10}$	31.38	$31 \cdot 3+$	+ 36.39	+ 36.71	+ 36.67
+ 1.39	$30 \cdot 75$	29.67	31.56	+ $42.7+$	+ 41.24	$\underline{+3.87}$
$+0.41$	$33 \cdot{ }^{8}$	33.00	$3+\cdot 8$	+ 13.73	+ 13.53	$+1+28$
+ 0.49	$45 \cdot 58$	47.02	4.544	+ 22.33	+ 23.04	+ 22.27
$+0.82$	$44 \cdot 81$	44.92	$44 \cdot 76$	+ 36.74	+ 36.83	+ 36.70
+ 0.13	47.01	47.07	47.10	+ 6.11	+6.12	+ 6.12
+0.29 $+\quad 0.18$	46.07	46.82	47.20	+ 13.36	$\begin{array}{r} \\ +13.58 \\ \hline\end{array}$	+ 13.69
-0.18	48.91	48.87	48.99	- 8.80	- 8.80	$\begin{array}{r}8.82 \\ +\quad 0.28 \\ \hline\end{array}$
+ 0.07	$46 \cdot 77$	47.10	$46 \cdot 92$	+ 3.27	+ 3.30 $+\quad 176$	+3.28 $+\quad 300$
+0.39	44.66	$45 \cdot 53$	$46 \cdot 16$	+ 17.42	+ 17.76	+ 18.00
-0.58	49.63	49.78	50.10	- 28.79	- 28.87	- 29.06
+ 4.02	55.20	$54 \cdot 04$	55.07	+221.90	+217.2+	+221.38
+ 3.63	55.63	$55 \cdot 34$	55:17	+201.94	+200.88	+ 200.27

Comparigon of Standard Yards $\mathbf{Y}_{65} \quad \mathbf{Y}_{65} \quad \mathbf{Y}_{20}$

$t-62^{\circ}=j^{\prime}$	a	b	c	$a \cdot f$	$b \cdot f$	$c \cdot f$
-22.79	14.66	23.15	100.26	-334.10	-527.59	-2284.93
-22.48	14.48	$2 \mathrm{I} \cdot 81$	98.28	-325.51	-490.29	-2209.33
-22.27	12.65	20.54	96.31	-281.72	-457.43	-2144.82
-21.98	12.35	19.80	93.25	-271.45	-435.20	-2049.64
-21.77	11.01	18.35	93.05	-239.69	-399.48	-2025.70
+ 0.50	$45 \cdot 48$	$44 \cdot 23$	40.99	+ 22.74	+ 22.12	+ 20.50
-0.03	48.60	47.18	$45 \cdot 47$	- 1.46	- 1.42	- 1.36
$+0.71$	$46 \cdot 10$	$44 \cdot 82$	$40 \cdot 36$	+ 32.73	+ 31.82	+ 28.66
+ 1.10	$44 \cdot 40$	$42 \cdot 97$	$37 \cdot 03$	+ 48.84	+ 47.27	+ 40.73
+ 1.78	$42 \cdot 35$	$40 \cdot 48$	32.96	+ $75 \cdot 38$	+ 72.05	+ 58.67
+ 2.20	$40 \cdot 96$	$39 \cdot 18$	$30 \cdot 26$	+ 90.11	+ 86.20	+ 66.57
+ 2.54	$38 \cdot 42$	38.27	27.43	+ 97.59	+ 97.21	+ 69.67
+ 2.82	38.86	$36 \cdot 43$	24.28	+109.59	+102.73	+ 68.47
+ 2.91	$37 \cdot 34$	35.94	24.45	+108.66	+104.59	+ 71.15
+ 3.19	37.30	$36 \cdot 36$	22.73	+118.99	+ 115.99	+ 72.51
+ 3.77	56.05	55.67	39.70	+211.31	+ 209.88	+ 149.67
+4.05 +4	54-12	$54 \cdot 52$	37.89	+219.19	+220.81	+ 153.45
+ 4.26	53.48	52.90	$37 \cdot 12$	$+227.82$	+225.35	+ 158.13
+ 4.53	$52 \cdot 45$	51.31	$32 \cdot 96$	$+237.60$	+232.43	+ 149.31
+ $3 \cdot 32$	57.34	58.23	43.20	+190.37	+193.32	+ 143.42
+ 3.74	55.95	54.57	38.06	+209.25	+204.09	+ 142.34
+ 3.97	55.25	54.63	$3^{8 \cdot 26}$	+219.34	+216.88	+ 151.89
+ 4.21	53.53	52.99	35.44	+225.36	+223.09	+ 149.20
+ 3.78	55.08	55.28	39.60	+208.20	+208.96	+ 149.69
+ 3.97	54.24	$53 \cdot 3^{8}$	37.93	+215.33	+211.92	+ 150.58

We shall consider first the yards $\mathbf{Y}_{60} \mathbf{Y}_{55} \mathbf{Y}_{07}$. Here we have

$$
\begin{aligned}
(f) & =-123.48 \\
(a) & =916.90 \\
(b) & =966.01 \\
(c) & =929.85 \\
(a f) & =-1977.05 \\
(b f) & =-3063.93 \\
(c f) & =-1965.10 \\
\left(f^{2}\right) & =3372.816 \\
n & =26
\end{aligned}
$$

and for the determination of $x y x^{\prime} y^{\prime}$ the following are the equations-

$$
\begin{array}{r}
26.00 x-123.480 y-49.11=0 \tag{10}\\
-123.48 x+3372.816 y+1086.88=0 \\
26.00 x^{\prime}-123.480 y^{\prime}-36 \cdot 16=0 \\
-123.48 x^{\prime}+3372.816 y^{\prime}+1098.83=0
\end{array}
$$

from which are obtained

$$
\begin{align*}
& x=+0.434 \tag{II}\\
& y=-0.3064 \\
& x^{\prime}=-0.189 \\
& y^{\prime}=-0.3327
\end{align*}
$$

and the reciprocals of the weights,

$$
\begin{align*}
& \text { for } x \text { or } x^{\prime} \text {.093118 } \tag{I2}\\
& \text { for } y \text { or } y^{\prime} \text {. . . .000718 }
\end{align*}
$$

We have then finally for the lengths of \mathbf{Y}_{00} and $\mathbf{Y}_{\sigma \pi}$

$$
\begin{align*}
& \mathbf{Y}_{60}=\mathbf{Y}_{b 5}+0.43-0.3064(t-62) \tag{13}\\
& \mathbf{Y}_{i T}=\mathbf{Y}_{b 5}-0.19-0.3327(t-62)
\end{align*}
$$

Again, for the yards $\mathbf{Y}_{05} \mathbf{Y}_{05} \mathbf{Y}_{20}$ we have

$$
\begin{array}{cr}
(f) & =-53.97 \\
(a) & = \\
(b) & 1032.45 \\
(c) & 1052.99 \\
(a f) & = \\
(b f) & 148.27 \\
(c f) & 1414.47 \\
\left(f^{2}\right) & =-815 \cdot 30 \\
n & = \\
n & 2978.59 \\
n & 25
\end{array}
$$

and for the determination of $x y x^{\prime} y^{\prime}$, the following are the equations-

$$
\begin{align*}
25.00 x-53 \cdot 970 y-20 \cdot 54 & =0 \tag{14}\\
-53.97 x+2678 \cdot 590 y+899 \cdot 17 & =0 \\
25 \cdot 00 x^{\prime}-53 \cdot 970 y^{\prime}+134 \cdot 28 & =0 \\
-53.97 x^{\prime}+2678.590 y^{\prime}-9236.47 & =0
\end{align*}
$$

from whence there result for $x y x^{\prime} y^{\prime}$, the following values

$$
\begin{align*}
& x=+0.101 \tag{15}\\
& y=-0.3336 \\
& x^{\prime}=+2.167 \\
& y^{\prime}=+3.4919 \tag{16}
\end{align*}
$$

Thus we get for the lengths of the yards \mathbf{Y}_{55} and \mathbf{Y}_{29} the following values

$$
\begin{align*}
& \mathbf{Y}_{05}=\mathbf{Y}_{05}+0 \cdot 10-0.3336(t-62) \tag{17}\\
& \mathbf{Y}_{20}=\mathbf{Y}_{\mathrm{B5}}+2.17+3.4919(t-62)
\end{align*}
$$

5.

We shall next inquire into the probable crror of these results. For this purpose, the quantities z have been computed, and together with the errors of the different equations are exhibited in the following Table:-

Errors of Comparisons of $\boldsymbol{Y}_{0 j} \mathbf{Y}_{\mathrm{is}} \mathbf{Y}_{07}: \mathbf{Y}_{\omega} \mathbf{Y}_{\omega} \mathbf{Y}_{20}$

Date.	z	Y_{00}	$Y_{\text {bj }}$	Y ${ }_{67}$	z	$Y_{6 j}$	Yis	Y_{23}	Date.
1864:									1864:
Feb. 26	$28 \cdot 40$	-0.45	+0.56	-0.11	22.79	-0.43	+0.36	+0.06	Feb. 29
" ,	26.79	$+0.26$	$+0.24$	-0.50	21.95	+0.13	-0.14	-0.00	," ,
"	26.22	+0.06	$+0.06$	-0.13	$20 \cdot 48$	-0.30	+0.06	+0.24	
" 27	26.70	-0.01	-0.04	$+0.04$	$19 \cdot 42$	+0.36	+0.38	-0.7.5	Mar. 1
"	27.29	+0.30	-0.60	$+0.29$	18.64	-0.27	-0.29	+0.56	
	$26 \cdot 73$	-0.12	-0.16	+0.27	44.85	+0.56	-0.62	+0.06	July 15
July 8	34.11	-0.51	+0.64	-0.14	47.81	+0.90	-0.63	-0.27	$\# \quad 16$
" "	$3^{1} \cdot 76$	$+0.14$	-0.52	$+0.39$	$45 \cdot 26$	$+0.70$	-0.44	-0.25	" "
, "	31.21	-0.12	-0.23	$+0.36$	$43 \cdot 38$	$+0.75$	-0.41	-0.34	
"	30.83	-0.44	-0.18	+0.61	41.23	+0.63	-0.75	+0.12	$\text { \# } 18$
" 9	31.63	-0.99	+0.11	-1-0.88	39.87	+0.46	-0.69	+0.24	"
	31.23	+0.01	-0.10	+0.08	38.14	-0.47	+0.13	+0.33	$"$
, 11	33.02	+0.36	-0.23	-0.14	$36 \cdot 92$	$+1.10$	-0.49	-0.62	
, "	$31 \cdot 10$	+0.07	$+0.28$	-0.34	$36 \cdot 40$	$+0.07$	-0.46	$+0.38$, 19
	$30 \cdot 44$	+0.31	-0.77	+0.47	$3^{6.25}$	+0.09	+0.11	-0.21	
\% 12	$33 \cdot 76$	+0.02	-0.76	+0.74	55.20	-0.31	+0.47	-0.17	" 20
"	45.99	-0.13	$+1.03$	-0.90	53.86	-0.99	+0.66	+0.34	" "
	$44 \cdot 74$	+0.25	+0.18	-0.44	53.08	-0.92	-0.18	+1.09	" \quad,
$\text { " } 13$	47.11	+0.29	-0.04	-0.24	$5 \mathrm{I} \cdot \mathrm{J} 0$	-0.06	$+0.21$	-0.15	
" 14	$46 \cdot 71$	-0.30	+0.11	+0.20	57.17	-0.84	$+1.06$	-0.21	$, \quad 21$
, 14	$49 \cdot 04$	$+0.36$	-0.17	-0.18	$54 \cdot 22$	+0.58	$+0.35$	-0.93	"
" "	$47 \cdot 00$	+0.18	+0.10	-0.29	$54 \cdot 32$	-0.29	+0.31	-0.03	" "
	$45 \cdot 45$	-0.48	+0.08	+0.39	$52 \cdot 51$	-0.28	+0.48	-0.20	
$\begin{array}{ll}7 & 15 \\ " \quad 22\end{array}$	$50 \cdot 04$ 54.00	+0.20 +0.40	+0.26 +0.04	+0.06	$5+72$	-0.80	+0.56	$+0.25$	$, \quad 22$
" 22	54.00	+0.40	$+0.04$	-0.4.5	$53 \cdot 45$	-0.43	-0.07	$+0.51$	
" 23	54.69	+0.26	+0.65	-0.92					

First, for the bars $66,55,67$, the sum of the squares of the seventy-eight errors is $12 \cdot 7036$, and the equations contain $26+4=30$ unknown quantities, hence the probable error of an equation-

$$
\begin{equation*}
= \pm 0.674 \sqrt{\frac{12 \cdot 7036}{78-30}}= \pm 0.347 \tag{I8}
\end{equation*}
$$

and we have the weight of the determination of x or x^{\prime} and of y or y^{\prime} in equation (12), consequently we get for the probable errors of the determinations of

$$
\begin{aligned}
& x \text { or } x^{\prime} \cdots \pm \pm 0.347 \sqrt{\sqrt{0.093118}}= \pm 0.106 \\
& y \text { or } y^{\prime} \cdots \pm \pm .347 \sqrt{.000718}= \pm 0.0093
\end{aligned}
$$

Again, for the bars $65,55,29$, the sum of the squares of the seventy-five errors is 18.9194, and the number of unknown quantities is $25+4=29$, consequently the probuble error of an equation is

$$
\begin{equation*}
= \pm 0.674 \sqrt{\frac{18.9194}{75-29}}= \pm 0.432 \tag{19}
\end{equation*}
$$

and the reciprocals of the weights of the determinations of $x x^{\prime} y y^{\prime}$ are given in equation （16）．Consequently we have the probable errors of

$$
\begin{aligned}
& x \text { or } x^{\prime} \ldots \pm 0.432 \sqrt{.08} \overline{3635}= \pm 0.125 \\
& y \text { or } y^{\prime} \ldots \pm \pm 0.432 \sqrt{.000781}= \pm 0.0121
\end{aligned}
$$

6.

The definite results of these comparisois are then as follows ：－
First，as to relative lengths in comparison with yard No． 55 at the tenperature of 62° Fahrenheit－

$$
\begin{align*}
& \mathbf{Y}_{50}=\mathbf{Y}_{55}+2.17 \pm 0.12 \tag{20}\\
& \mathbf{Y}_{65}=\mathbf{Y}_{55}+0.10 \pm 0.12 \\
& \mathbf{Y}_{65}=\mathbf{Y}_{55}+0.43 \pm 0.11 \\
& \mathbf{Y}_{07}=\mathbf{Y}_{55}-0.19 \pm 0.11
\end{align*}
$$

Again，for the rates of expansion for I° Fabrenheit－

$$
\begin{array}{cll}
\text { Exp. of } \mathbf{Y}_{29}=\text { Exp. of } \mathbf{Y}_{05}+3.4919 \pm 0.0121 \tag{21}\\
" & \mathbf{Y}_{65}= & \mathbf{Y}_{05}-0.3336 \pm 0.0121 \\
" & \mathbf{Y}_{05}= & " \\
" & \mathbf{Y}_{05}-0.3064 \pm 0.0093 \\
" & \mathbf{Y}_{67}= & \mathbf{Y}_{55}-0.3327 \pm 0.0093
\end{array}
$$

On comparing the lengths of these five bars as they now stand with reference to one another with the lengths assigned by Mr．Sheepshanks，we find differences considerably greater than the probable errors of observation would lead one to expect．If $\mathbf{W}_{\text {represent }}$ the length of the yard in abstract idea，Mr．Sheepshanks＇results were－

$$
\begin{align*}
& \mathbf{Y}_{20}=0+4.58 \tag{22}\\
& \mathrm{Y}_{\mathrm{is}}=\mathbf{7}+0.43 \\
& \mathbf{Y}_{\mathrm{as}}=\mathbf{9}-\mathrm{I} \cdot \mathbf{2 8} \\
& \mathrm{Y}_{00}=\mathrm{F}-0.65 \\
& \mathbf{Y}_{67}=\text { 甼 }-2.69
\end{align*}
$$

＇The mean length of these five yards was therefore
黙 + 0.08

Here we have between \mathbf{Y}_{39} and \mathbf{Y}_{02} a difference of $7 \cdot \mathbf{2 7}$ ，whereas the difference now appears to be 2．36：between \mathbf{Y}_{55} and \mathbf{Y}_{65} the difference was 1． 7 I，it now is $0 \cdot 10$ Agrinn， between Y_{55} and Y_{07} the difference was $3 \cdot 12$ ，and now is $0 \cdot 19$ ．These apparent changes of length are greater than might be explained by errors of observation．With reference to the Bronze bar 29，it is to be remarked that a particle of mercury has at some time got into one of the wells carrying the divided surface and in the attempt to dislodge it，the surface has been scratched，but the line is not materially hurt，and at the point proper for bisection is tolerably good．This might possibly account for a difference of $\mathrm{I} \cdot \mathrm{oo}$ at the very outside．The bars $\mathbf{Y}_{\mathrm{bj}} \mathbf{Y}_{\mathrm{G} 7}$ as has been stated，were not very elaborately observed by Mr．Sheepshanks．

In order to obtain from the five bars as they now stand，the value of 9 ，the most reasonable method is to assume that the mean length of the five bars is the same now as in 1853，that is

$$
\text { 㗉 }+0.08
$$

From the results we have just obtained，equations（20），the mean length at present is

$$
\mathbf{Y}_{\mathrm{is}}+0.50
$$

Equating these values， $\boldsymbol{B}=\mathbf{Y}_{05}+0 \cdot 4^{2}$ ，and the absolute length at present of the five bars would be

$$
\begin{align*}
& \mathbf{Y}_{20}=19+1 \cdot 75 \tag{23}\\
& \mathbf{Y}_{05}=0-0.42 \\
& \mathbf{Y}_{\mathrm{ij}}=\text { 巻 }-0.3^{2} \\
& \mathbf{Y}_{66}=70.01 \\
& \mathrm{~V}_{07}=1 \text {. }-0.6 \mathrm{I} \\
& \text { Mean = 㸷 + 0.08 }
\end{align*}
$$

If we were to reject the bars $29,65,67$ ，as less perfectly compared in 1853 with the standard than 55 and 66 ，which were compared on a considerable number of days each， we should obtain on the assumption of the mean length of 55 and 66 remaining constant

$$
\begin{aligned}
& \mathbf{Y}_{05}=-0.33 \\
& \mathbf{Y}_{80}=+0.10
\end{aligned}
$$

a result sufficiently close to the former．
If we give double weight to Mr．Sheepshanks＇values of \mathbf{Y}_{55} and \mathbf{Y}_{80} ，then we get
but from the present comparisons

$$
\mathbf{Y}_{25}+2 \mathbf{Y}_{05}+\mathbf{Y}_{05}+2 \mathbf{Y}_{06}+2 \mathbf{Y}_{67}=7 \mathbf{Y}_{55}+2.94
$$

consequently，equating these values

$$
\underline{\# \#}=\mathbf{V}_{55}+0.40
$$

and the present lengths of the yards stand thus

$$
\begin{align*}
& \mathbf{Y}_{59}=\boldsymbol{O}+1.77 \tag{24}\\
& \mathbf{Y}_{65}=\boldsymbol{D}-0.40 \\
& \mathbf{Y}_{65}=\boldsymbol{O}-0.30 \\
& \mathbf{Y}_{66}=\boldsymbol{O}+0.03 \\
& \mathbf{Y}_{67}=\boldsymbol{\emptyset}-0.59
\end{align*}
$$

the bars standing at the temperature of 62° Fahrenheit．

XIV.

DETERMINATION OF TIIE LENGTII OF THE ROYAL SOCIETY'S PLATINUM METRE.

The metre whose length is here investigated is the "Mitre a truits." This bar, to which so much interest attaches on account of the observations made to determine its precise length in English inches, first, in 1818 by Captain Kater, and again in 1835 by Mr. Baily, was lent by the Royal Society in 1864 to the Director of the Ordnance Survey, in order that a new determination of its length might be made in terms of the present National Standard Yard.

In the Philosophical Transactions for 1818, page 103, will be found Captain Kater's description of two platinum metres, of which this is one; also on pages 88,89 of the ninth volume of the Memoirs of the Royal Astronomical Society is Mr. Baily's description of the same bars; one a "Meitre à traits," and the other a "Metre a houts."

1.

The Mètre à traits is a flat bar of platinum 4 I inches in length, an inch wide, and a quarter of an inch thick. The lines which define the metre are exceedingly fine, and when viewed under the micrometer microscopes are sometimes very difficult to "observe," as they are crossed in every direction by the scratches on the surfice, and almost lost among them. On this account it was considered necessary in the present operations to bisect the line not with the cross of the micrometer microscopes, but with the straight transverse wire.

The bar was mounted on a cradle system of eight rollers, the distance apart of the rollers being

$$
\frac{40 \cdot 96}{\sqrt{63}}=5 \cdot 16 \text { inches. }
$$

40.96 being the precise length of the bar in inches. For comparison, it was laid in the same box with the Ordnance Metre, $\mathbf{O M}$, whose length is known in terms ol the yard $\mathbf{Y}_{\text {so }}$ see Section IX.

These two bars lying side by side were compared on August ist, 2d, 3 d, and 4 th, at temperatures between $63^{\circ} \cdot 7$ and $63^{\circ} \cdot 5$: and again on December 26 th, 27 th, 28 th, 29th, at temperatures varying from $35^{\circ} \cdot 5$ to $38^{\circ} \cdot 3$. The number of comparisons in all
is 26 . In each comparison, each bar is observed twice, the total number of micrometer reudings being 32 disposed thus:

Dars.	Microscopes.	
	H	K
RSM	4 readings	4 readings
OM	4 "	+ "
OM	4 "	4 "
RSM	4 "	4 "

The large number-four-of readings taken at a time, being with the view of eliminating the error of observation due to the indistinctness of the lines on the Platinum Metre. A smaller number of readings of $\mathbf{O M}$ would have sufficed as the lines on that bar are excellent.

In order to ascertain whether the peculiarity of the lines on the Platinum Metre might give rise to "personal error" in the bisection with the transverse wire of the micrometer, a large number of readings of each line were made, on two successive days, by three observers, Captain Clarke, R.E., Quartermaster Stecl, R.E., and Corporal Compton, R.E. The result obtained from these, was the appearance of the following personal errors,

$$
\begin{aligned}
& \text { Captain Clarke }+0.27 \text { division. } \\
& \text { Quartermaster Steel }-0.12 \text { "- } \quad \text { ". } \\
& \text { Corporal Compton . . . }
\end{aligned}
$$

these quantities being for each observer the sum of the personal errors on the two microscopes H and K. But as they are smaller than the probable errors attaching to them, we shall dismiss them from further consideration.

On each evening the bars were both dismounted, and the box containing them reversed end for end, so that the bar which had been next the piers during the day would be furthest from the piers on the following day. Both bars were then made level, the microscopes brought to accunate focus, and their axes adjusted to verticality. Thus all the adjustments being renewed each crening, there can be very little fear of anything like constant error attaching to the result.

The comparisons were made generally at about 9^{11} a.m., 1^{11}, 3^{11}, and 5^{11} p.m., the rule being to keep them as far separated in point of time as convenient.

The middle points of the lines are intended to be observed, but just at those points it is impossible to observe them : in fact no particular point of either line was observed, but the general appearance of the liue for a space of about two hundreths of an inch on either side of the centre was considered in making the bisections. The centre of the line was indicated by a mark on a small slip of paper lying across the scale.

2.

In order that the extent of the uncertainty attaching to the faintness of the line may le fully apparent, we shall here give, in the following table, all the individual micrometer readings.

Companison of Rofal Societt's Metry (4 traits) witi Ordnance Metre.

Comparibon of Royal Society's Metre (A trayts) with Ordnance Metre-continued.

No. of Comparison and Date.	Thermometer.	RSM		OM		No. of Comparisou and Date.	Thermometer.	RSM		OM	
		H	K	H	K			H	K	H	K
$\begin{aligned} & 18 \kappa_{4} . \\ & \text { Aug. } \end{aligned}$	$\begin{aligned} & 63.90 \\ & 63.90 \end{aligned}$	49•1	26.0	$50 \cdot 4$	$32 \cdot 4$	$\begin{gathered} 1864 \\ \text { Dec. } 27 \end{gathered}$	$\begin{aligned} & 3^{\circ} .05 \\ & 36.06 \end{aligned}$	19.9	$27 \cdot 9$	$48 \cdot 0$	$48 \cdot 9$
		$5 \mathrm{I} \cdot 5$	23.2	$50 \cdot 2$	$32 \cdot 9$			19.9	$29 \cdot 5$	47.9	$48 \cdot 7$
		50.9	$25 \cdot 0$	$50 \cdot 9$	$33 \cdot 4$			18.1	28.8	$47 \cdot 1$	$48 \cdot 2$
		$50 \cdot 0$	$23 \cdot 1$	$50 \cdot 0$	33.5			18.6	29.4	$47 \cdot 0$	$48 \cdot 5$
		$46 \cdot 6$	31.6	$49 \cdot 0$	$33 \cdot 5$	16	$\begin{aligned} & 36.05 \\ & 36.06 \end{aligned}$	20.0	$25 \cdot 6$	50.1	$46 \cdot 4$
		$43 \cdot 1$	31.0	$49 \cdot 0$	$34 \cdot 2$			19.6	29.1	$49 \cdot 4$	$46 \cdot 5$
	63.91	$46 \cdot 0$	$31 \cdot 3$	$49 \cdot 4$	$34 \cdot 1$			20.6	$30 \cdot 0$	$50 \cdot 1$	$47 \cdot 0$
	63.90	44.5	$30 \cdot 0$	$49 \cdot 3$	$34 \cdot 1$			$18 \cdot 5$	28.6	$50 \cdot 2$	$47 \cdot 2$
Aug. 4	$\begin{aligned} & 64.08 \\ & 64.05 \end{aligned}$	$42 \cdot 4$	29.0	$46 \cdot 0$	36.6	Dec. 27	$\begin{aligned} & 3^{6 \cdot 07} \\ & 3^{6 \cdot 07} \end{aligned}$	22.3	$26 \cdot 3$	$49 \cdot 0$	$52 \cdot 0$
		$45 \cdot 3$	$3 \mathrm{I} \cdot 8$	$46 \cdot 3$	37.0			21.0	27.5	$49 \cdot 2$	$52 \cdot 0$
		41.8	$32 \cdot 9$	$46 \cdot 2$	37.5			21.0	$26 \cdot 4$	$49 \cdot 4$	53.0
		$43 \cdot 2$	$32 \cdot 4$	$46 \cdot 1$	$37 \cdot 2$			23.0	26.9	48.8	$52 \cdot 7$
12		$37 \cdot 4$	$36 \cdot 5$	$46 \cdot 3$	$37 \cdot 3$	17		$22 \cdot 3$	$26 \cdot 4$	$46 \cdot 5$	53.1
		$35 \cdot 9$	$36 \cdot 2$	$46 \cdot 1$	$36 \cdot 8$			24.0	27.0	$47 \cdot 5$	54.7
	$64 \cdot 10$	37.0	$36 \cdot 9$	$45 \cdot 9$	$37 \cdot 0$		$36 \cdot 10$	$25 \cdot 0$	26.0	47.0	$53 \cdot 2$
	64.08	37.8	35.6	$46 \cdot 0$	$37 \cdot 3$		$36 \cdot 09$	25.6	25.9	$48 \cdot 0$	53.1
Dec. 26	$\begin{aligned} & 3^{8 \cdot} \cdot 3^{6} \\ & 3^{8 \cdot 34} \end{aligned}$	6.7	$6 \cdot 9$ 7.5	$30 \cdot 0$	32.0	Dec. 27	$\begin{aligned} & 36 \cdot 20 \\ & 36 \cdot 22 \end{aligned}$	$26 \cdot 0$	23.0	45.0	$51 \cdot 4$
		$6 \cdot 4$	$7 \cdot 5$	$29 \cdot 3$	32.4			27.1	24.2	$44 \cdot 6$	$50 \cdot 9$
		$6 \cdot 0$	$8 \cdot 0$	$29 \cdot 4$	$32 \cdot 6$			23.0	21.9	$44 \cdot 4$	51.8
		$7 \cdot 5$	$8 \cdot 4$	$30 \cdot 9$	$32 \cdot 1$			23.2	22.0	45:0	$5 \mathrm{I} \cdot 4$
13		$5 \cdot 4$	$8 \cdot 0$	29.1	$32 \cdot 6$	18		24.0	$2 \mathrm{I} \cdot \mathrm{I}$	$47 \cdot 3$	49•1
		$5 \cdot 0$	$8 \cdot 4$	$30 \cdot 0$	$32 \cdot 5$			24.9	23.0	$46 \cdot 4$	$50 \cdot 2$
	$38 \cdot 37$	$8 \cdot 1$ 8.5	$8 \cdot \mathrm{I}$	$29 \cdot 3$	$32 \cdot 3$			23.9	21.4	$46 \cdot 0$	$49 \cdot 5$
	$3^{8 \cdot} 3^{6}$	$8 \cdot 5$	$5 \cdot 1$	$29 \cdot 3$	32.6		$36 \cdot 25$	23.5	24.3	$46 \cdot 4$	$50 \cdot 0$
Dec. 26	$\begin{aligned} & 3^{8 \cdot} \cdot 3^{2} \\ & 3^{8 \cdot} \cdot 3^{8} \end{aligned}$	$7 \cdot 0$	$8 \cdot 5$	27.8	$37 \cdot 0$	Dec. 28	$\begin{aligned} & 35 \cdot 60 \\ & 35 \cdot 54 \end{aligned}$		$22 \cdot 5$		$47 \cdot 0$
		6.8	10.0	$27 \cdot 2$	$37 \cdot 5$			60.5	19.5	85.5	$47 \cdot 2$
		$8 \cdot 5$	$8 \cdot 9$	$27 \cdot 4$	$37 \cdot 0$			61.5	19.0	$85 \cdot 0$	47.8
		$8 \cdot 0$	$8 \cdot 2$	27.6	$3^{8.0}$			62.5	18.0	$85 \cdot 4$	48.0
14		$7 \cdot 7$	6.0	27.5	$37 \cdot 0$	19		$61 \cdot 2$	17.8	72.8	$57 \cdot 2$
		$8 \cdot 5$	$6 \cdot 5$	28.0	$37 \cdot 4$			$63 \cdot 3$	15.0	$73 \cdot 7$	$58 \cdot 5$
	$3^{8 \cdot} 3^{2}$	$8 \cdot \mathrm{I}$	$7 \cdot 5$	27.4	37.2		$35 \cdot 60$	63.0	15.4	73.9	$58 \cdot 5$
	$3^{8 \cdot} 37$	$7 \cdot 8$	$7 \cdot 9$	28.4	38.0		$35 \cdot 54$	64.9	15.5	$73 \cdot 3$	$59 \cdot 2$
Dec. 27	$\begin{aligned} & 3^{6 \cdot 13} \\ & 3^{6 \cdot 14} \end{aligned}$					Dec. 28		$42 \cdot 0$		74.9	$54 \cdot 9$
		$30 \cdot 5$	17.8	$52 \cdot 8$	$46 \cdot 9$		$35 \cdot 49$	$42 \cdot 1$	$36 \cdot 2$	74.4	54.7
		$30 \cdot 0$	16.7	$53 \cdot 1$	$47 \cdot 0$			$42 \cdot 2$	$38 \cdot 2$	74.6	$55 \cdot 6$
		$3 \mathrm{I} \cdot 0$	$17 \cdot 1$	$52 \cdot 0$	$46 \cdot 9$			44.8	$37 \cdot 0$	74.6	$55 \cdot 0$
15		$30 \cdot 3$	15.0	$61 \cdot 1$	38.0	20		$44 \cdot 9$	38.8	$65 \cdot 2$	$64 \cdot 4$
		$29 \cdot 5$	$15 \cdot 2$	$6 \mathrm{I} \cdot 8$	$37 \cdot 3$			$43 \cdot 8$	$39 \cdot 1$	65.8	$64 \cdot 4$
	$36 \cdot 10$	$30 \cdot 7$	$17 \cdot 1$	$61 \cdot 5$	37.6		$35 \cdot 46$	$44 \cdot 9$	$37 \cdot 1$	$65 \cdot 5$	$65 \cdot 1$
	$36 \cdot 10$	$3^{1 \cdot 3}$	$16 \cdot 1$	$6 \mathrm{I} \cdot 4$	$37 \cdot 1$		$35 \cdot 49$	$45 \cdot 1$	$3^{6 \cdot 1}$	65.0	64.7

Comparison of Ropal Society'b Metre (a traits) with Ordnance Metre-continued.

The thermometer readings here given are corrected for the errors of the respective thermometers.

If now from the individual readings in each group of four we subtract the mean of the four, we shall get a series of errors which may be considered as errors of reading : these errors are given in the following table.

Errors of Reading.

No. of Comparison.	RSM		OM		No. of Comparison.	RSM		ом	
	H	K	H	K		H	K	H	K
1	$\begin{array}{r} -1.23 \\ +\quad 0.97 \\ -\quad 0.23 \\ +\quad 0.47 \\ -\quad 0.25 \\ -1.85 \\ + \\ +\quad 0.85 \\ + \\ 1.25 \end{array}$	$\begin{aligned} & -0.92 \\ & + \\ & + \\ & -\quad 0.58 \\ & + \\ & + \\ & 0.42 \\ & - \\ & -2.30 \\ & + \end{aligned} \quad 0.50$	$\left\lvert\, \begin{aligned} & +0.25 \\ & -0.15 \\ & -0.05 \\ & -0.05 \\ & - \\ & -0.23 \\ & + \\ & -0.67 \\ & -0.23 \\ & - \end{aligned} 0.23\right.$	$\begin{aligned} & -0.10 \\ & +0.20 \\ & +0.40 \\ & +0.30 \\ & -0.07 \\ & +0.23 \\ & +0.23 \\ & -0.37 \end{aligned}$	C	$\left\lvert\, \begin{array}{ll} +1.78 \\ -1.12 \\ - & 0.32 \\ -0.32 \\ - & 0.25 \\ + & 0.45 \\ + & 1.25 \\ - & 0.45 \end{array}\right.$		$\begin{aligned} & +0.28 \\ & -0.72 \\ & +0.18 \\ & +0.28 \\ & -0.27 \\ & -0.17 \\ & -0.27 \\ & +0.73 \end{aligned}$	-0.52 +0.18 +0.48 -0.12 -0.22 -0.12 +0.08 +0.28
2		$\begin{aligned} & + \\ & + \\ & \hline \end{aligned} 0.13$	$\begin{aligned} & +0.58 \\ & +0.38 \\ & -0.32 \\ & -0.62 \\ & -\quad 0.42 \\ & + \\ & + \\ & + \\ & + \\ & -0.28 \\ & -0.12 \end{aligned}$	$\begin{aligned} & -0.75 \\ & +0.25 \\ & +0.25 \\ & +0.25 \\ & -0.02 \\ & +0.48 \\ & +0.12 \\ & -0.32 \end{aligned}$	7	$\left\lvert\, \begin{array}{ll} - & 0.28 \\ + & 1.12 \\ - & 0.68 \\ - & 0.18 \\ + & 0.45 \\ + & 1.25 \\ + & 0.15 \\ - & 1.55 \end{array}\right.$	$\begin{array}{lll} + & 1.42 \\ - & 0.18 \\ + & 0.72 \\ - & 1.98 \\ - & 0.48 \\ + & 0.52 \\ - & 0.58 \\ + & 0.52 \end{array}$	$\begin{aligned} & +0.57 \\ & -0.73 \\ & +0.27 \\ & -0.13 \\ & +0.12 \\ & +0.62 \\ & -0.28 \\ & -0.48 \end{aligned}$	$\begin{aligned} & -0.15 \\ & +0.45 \\ & +0.15 \\ & -0.45 \\ & +0.40 \\ & +0.20 \\ & -0.00 \\ & -0.60 \end{aligned}$
3	$\begin{aligned} & +2.35 \\ & + \\ & + \\ & -1.05 \\ & - \\ & -1.15 \\ & + \\ & + \\ & + \\ & + \\ & \hline \end{aligned} 0.70$	$\begin{aligned} & +0.10 \\ & -0.10 \\ & -0.60 \\ & + \\ & +0.60 \\ & + \\ & +0.05 \\ & -1.45 \\ & + \\ & \hline \end{aligned}$	$\begin{aligned} & -0.17 \\ & -0.07 \\ & -0.27 \\ & +0.53 \\ & +0.13 \\ & +0.53 \\ & -0.17 \\ & -0.47 \end{aligned}$		8	+2.72 -1.08 -1.38 -0.28 +1.97 -0.43 -0.03 -1.53		$\begin{aligned} & +0.17 \\ & +0.37 \\ & -0.43 \\ & -0.13 \\ & +0.60 \\ & +0.20 \\ & -0.50 \\ & -0.30 \end{aligned}$	$\begin{aligned} & -0.08 \\ & +0.32 \\ & -0.08 \\ & -0.18 \\ & -0.20 \\ & -0.60 \\ & +0.70 \\ & +0.10 \end{aligned}$
4	$\begin{aligned} & -1.20 \\ & - \\ & + \\ & + \\ & + \\ & + \\ & \hline \end{aligned} .50 .40$	+1.20 +0.30 +0.40 -1.10 -1.47 +1.33 -0.67 +0.83	$\begin{aligned} & -0.65 \\ & -0.45 \\ & + \\ & + \\ & + \end{aligned} 0.55$	$\begin{array}{\|} +0.15 \\ -0.05 \\ -0.05 \\ -0.05 \\ + & 0.13 \\ -0.17 \\ + & 0.13 \\ -0.07 \end{array}$	9	$\begin{aligned} & +0.95 \\ & + \\ & + \\ & \hline \end{aligned} \quad 2.05$	-0.73 +1.47 -0.43 -0.33 +1.77 +1.63 -1.53 +1.37		$\begin{array}{\|l\|} + \\ +0.17 \\ +0.07 \\ -0.07 \\ -0.33 \\ -0.35 \\ +0.25 \\ +0.05 \\ +0.05 \end{array}$
5	$\begin{aligned} & - \\ & - \\ & + \\ & - \end{aligned} 0.60$	$\begin{aligned} & +1.18 \\ & -2.82 \\ & + \\ & +\quad 0.08 \\ & + \\ & 1.58 \\ & + \\ & +0.35 \\ & -0.15 \\ & + \\ & + \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & -0.05 \\ & -0.15 \\ & -0.25 \\ & +\quad 0.45 \\ & +\quad 0.13 \\ & +0.27 \\ & -0.17 \\ & + \end{aligned} 0.33$	$\begin{aligned} & +0.35 \\ & +0.05 \\ & +0.65 \\ & +0.25 \\ & -0.47 \\ & +0.13 \\ & +0.23 \\ & +0.13 \end{aligned}$	10	$\begin{aligned} & -2.18 \\ & + \\ & +1.02 \\ & -0.08 \\ & + \\ & \hline \end{aligned} .22$	+0.65 +0.15 +0.55 -1.05 -1.00 -1.00 +1.10 +0.90	-0.57 -0.43 +0.17 -0.33 -0.10 +0.10 -0.00 -0.00	$\begin{aligned} & +0.32 \\ & -0.08 \\ & -0.28 \\ & +0.02 \\ & -0.08 \\ & -0.18 \\ & +0.12 \\ & +0.12 \end{aligned}$

169

Errors of Reading-continued.

No, of Comperison.	RSM		OM		No. of Comparison.	HSM		OM	
	H	K	H	K		H	K	H	K
11	$\begin{array}{ll} -1.28 \\ + & 1.12 \\ + & 0.52 \\ - & 0.38 \\ + & 1.55 \\ - & 1.95 \\ + & 0.95 \\ - & 0.55 \end{array}$		$\left(\begin{array}{ll} + & 0.02 \\ - & 0.18 \\ + & 0.52 \\ - & 0.38 \\ - & 0.18 \\ - & 0.18 \\ + & 0.22 \\ + & 0.12 \end{array}\right.$	$\begin{array}{r} -0.65 \\ -0.15 \\ +0.35 \\ +0.45 \\ -0.48 \\ +0.22 \\ +0.12 \\ +0.12 \end{array}$	16	$\begin{aligned} & +0.77 \\ & +0.77 \\ & -1.03 \\ & -0.53 \\ & +0.32 \\ & -0.08 \\ & +0.92 \\ & -1.18 \end{aligned}$	$\begin{aligned} - & 1.00 \\ + & 0.60 \\ - & 0.10 \\ + & 0.50 \\ - & 2.73 \\ + & 0.77 \\ + & 1.67 \\ + & 0.27 \end{aligned}$	$\left\lvert\, \begin{aligned} & +0.50 \\ & + \\ & -0.40 \\ & -0.40 \\ & - \\ & 0.50 \\ & + \\ & +0.15 \\ & + \\ & + \end{aligned} 0.55\right.$	$\left\lvert\, \begin{aligned} & +0.32 \\ & +0.12 \\ & -0.38 \\ & -0.08 \\ & -0.38 \\ & -0.28 \\ & +0.22 \\ & +0.42 \end{aligned}\right.$
12	$\begin{array}{r} -0.78 \\ +\quad 2.12 \\ -1.38 \\ + \\ 0.02 \\ + \\ \hline \end{array}$			$\begin{array}{r} -0.48 \\ -0.08 \\ +0.42 \\ +0.12 \\ +0.20 \\ -0.30 \\ -0.10 \\ + \\ \hline \end{array}$	17	$\begin{array}{\|} +0.47 \\ -0.83 \\ -0.83 \\ +\quad 1.17 \\ -1.93 \\ -0.23 \\ + & 0.77 \\ + & 1.37 \end{array}$	$\left(\begin{array}{ll} - & 0.48 \\ + & 0.72 \\ - & 0.38 \\ + & 0.12 \\ + & 0.07 \\ + & 0.67 \\ - & 0.33 \\ - & 0.43 \end{array}\right.$	$\left\lvert\, \begin{aligned} & -0.10 \\ & +0.10 \\ & +0.30 \\ & -0.30 \\ & -0.75 \\ & + \\ & -0.25 \\ & -0.25 \\ & + \end{aligned} 0.75\right.$	$\left\lvert\, \begin{array}{ll} - & 0.43 \\ - & 0.43 \\ + & 0.57 \\ + & 0.27 \\ - & 0.43 \\ + & 1.17 \\ - & 0.33 \\ - & 0.43 \end{array}\right.$
13	$\begin{aligned} & +0.05 \\ & -0.25 \\ & - \\ & + \\ & + \\ & 0.655 \\ & - \\ & -1.35 \\ & - \\ & + \\ & + \\ & + \\ & + \\ & 1.35 \\ & 1.75 \end{aligned}$	$\begin{array}{ll} - & 0.80 \\ - & 0.20 \\ + & 0.30 \\ + & 0.70 \\ + & 0.60 \\ + & 1.00 \\ + & 0.70 \\ - & 2.30 \end{array}$	$\left(\begin{array}{ll} + & 0.10 \\ - & 0.60 \\ - & 0.50 \\ + & 1.00 \\ - & 0.33 \\ + & 0.57 \\ - & 0.13 \\ - & 0.13 \end{array}\right.$	$\begin{array}{r} -0.28 \\ +\quad 0.12 \\ +0.32 \\ -0.18 \\ +\quad 0.10 \\ +0.00 \\ -0.20 \\ +\quad 0.10 \end{array}$	18	$\left\lvert\, \begin{array}{r} +1.17 \\ +2.27 \\ -1.83 \\ -1.63 \\ -0.08 \\ +0.82 \\ -0.18 \\ -0.58 \\ \hline \end{array}\right.$	$\left\lvert\, \begin{array}{ll} + & 0.22 \\ + & 1.42 \\ - & 0.88 \\ - & 0.78 \\ - & 1.35 \\ + & 0.55 \\ - & 1.05 \\ + & 1.85 \end{array}\right.$	$\begin{aligned} & +0.25 \\ & -0.15 \\ & -0.35 \\ & +0.25 \\ & +0.77 \\ & -0.13 \\ & -0.53 \\ & -0.13 \end{aligned}$	$\begin{array}{ll} + & 0.02 \\ - & 0.48 \\ + & 0.42 \\ + & 0.02 \\ - & 0.60 \\ + & 0.50 \\ - & 0.20 \\ + & 0.30 \end{array}$
14	$\begin{array}{r} -0.58 \\ -0.78 \\ + \\ + \end{array} \quad 0.92$	$\left(\begin{array}{ll} - & 0.40 \\ + & 1.10 \\ + & 0.00 \\ - & 0.70 \\ - & 0.98 \\ - & 0.48 \\ + & 0.52 \\ + & 0.92 \end{array}\right.$	$\left\lvert\, \begin{array}{ll} + & 0.30 \\ - & 0.30 \\ - & 0.10 \\ + & 0.10 \\ - & 0.33 \\ + & 0.17 \\ - & 0.43 \\ + & 0.57 \end{array}\right.$	$\left(\begin{array}{l} -0.38 \\ + \\ -0.12 \\ -0.38 \\ + \\ 0.62 \\ - \\ -0.40 \\ + \end{array} 0.00\right.$	19	$\left(\begin{array}{ll} - & 1.88 \\ - & 0.38 \\ + & 0.62 \\ + & 1.62 \\ - & 1.90 \\ + & 0.20 \\ - & 0.10 \\ + & 1.80 \end{array}\right.$		$\begin{aligned} & -0.08 \\ & + \\ & +0.22 \\ & - \\ & + \end{aligned} 0.28$	$\begin{aligned} & -0.50 \\ & -0.30 \\ & +\quad 0.30 \\ & +\quad 0.50 \\ & - \\ & -1.15 \\ & + \\ & + \end{aligned} 0.15$
15	$\begin{array}{ll} - & 0.75 \\ + & 0.25 \\ - & 0.25 \\ + & 0.75 \\ - & 0.15 \\ - & 0.95 \\ + & 0.25 \\ + & 0.85 \end{array}$		$\left[\begin{array}{ll} - & 0.10 \\ + & 0.20 \\ + & 0.50 \\ - & 0.60 \\ - & 0.35 \\ + & 0.35 \\ + & 0.05 \\ - & 0.05 \end{array}\right.$		20	$\begin{array}{ll} - & 0.78 \\ - & 0.68 \\ - & 0.58 \\ + & 2.02 \\ + & 0.22 \\ - & 0.88 \\ + & 0.22 \\ + & 0.42 \end{array}$	$\left(\begin{array}{ll} + & 0.72 \\ - & 1.18 \\ + & 0.82 \\ - & 0.3^{8} \\ + & 1.02 \\ + & 1.32 \\ - & 0.68 \\ - & 1.68 \end{array}\right.$	$\left\lvert\, \begin{array}{cc} + & 0.27 \\ - & 0.23 \\ - & 0.03 \\ - & 0.03 \\ - & 0.18 \\ + & 0.42 \\ + & 0.12 \\ -0.38 \end{array}\right.$	-0.15 -0.35 +0.55 -0.05 - -0.25 -0.25 +

Errors of Reading-continued.

$\begin{gathered} \text { No. of } \\ \text { Comparison. } \end{gathered}$	RSM		OM		$\begin{gathered} \text { No. of } \\ \text { Comparison. } \end{gathered}$	RSM		OM	
	H	K	H	K		H	K	H	K
21	$\begin{aligned} & -2.05 \\ & + \\ & + \\ & + \\ & + \\ & + \end{aligned} 0.35$	$\begin{aligned} & +0.67 \\ & -0.33 \\ & -0.93 \\ & +\quad 0.57 \\ & + \\ & +0.95 \\ & + \\ & + \\ & -1.15 \\ & - \\ & -2.05 \end{aligned}$	$\begin{aligned} & -1.18 \\ & +0.02 \\ & +0.72 \\ & +0.42 \\ & +0.75 \\ & +0.65 \\ & +0.65 \\ & -0.75 \end{aligned}$	$\begin{aligned} & +0.35 \\ & \hline-0.05 \\ & +0.45 \\ & -0.75 \\ & +\quad 0.32 \\ & -0.38 \\ & -0 \\ & \hline \end{aligned}$	24	$\left[\begin{array}{l} -0.43 \\ - \\ -0.13 \\ -0.73 \\ + \\ 1.27 \\ -1.10 \\ + \\ + \\ 1.70 \\ + \\ -1.40 \\ -1.00 \end{array}\right.$	$\begin{aligned} & -0.70 \\ & -0.70 \\ & +2.20 \\ & -0.80 \\ & +0.72 \\ & -0.58 \\ & -1.02 \\ & -1.18 \end{aligned}$	$\left\lvert\, \begin{aligned} & +0.42 \\ & -0.3^{8} \\ & + \\ & +0.32 \\ & -0.3^{8} \\ & + \\ & +0.37 \\ & + \\ & -0.27 \\ & -0.23 \\ & -0.43 \end{aligned}\right.$	$\begin{aligned} & -0.50 \\ & -0.30 \\ & +0.40 \\ & + \\ & +0.40 \\ & + \\ & +0.37 \\ & -0.23 \\ & -0.23 \\ & + \end{aligned} 0.07$
22	$\begin{aligned} & +0.72 \\ & +0.72 \\ & +1.68 \\ & +0.22 \\ & +0.52 \\ & + \\ & +0.88 \\ & + \\ & + \\ & + \\ & \hline \end{aligned}$	$\begin{aligned} & +0.05 \\ & -0.25 \\ & -1.45 \\ & +1.65 \\ & -\quad 0.25 \\ & -0.65 \\ & + \end{aligned} 0.35$	$\begin{aligned} & +0.10 \\ & +0.00 \\ & +0.70 \\ & + \\ & +0.60 \\ & -0.30 \\ & + \\ & + \\ & \hline-0.40 \\ & + \\ & \hline \end{aligned}$	$\begin{aligned} & -0.20 \\ & -0.30 \\ & + \\ & + \\ & +\quad 0.30 \\ & -\quad 0.30 \\ & -\quad 0.40 \\ & + \\ & +0.10 \\ & + \end{aligned} 0.30$	25	$\begin{aligned} & +0.45 \\ & -0.65 \\ & +0.35 \\ & -0.15 \\ & + \\ & +0.90 \\ & + \\ & + \\ & \hline \end{aligned} 1.60$	$\begin{aligned} & +1.07 \\ & -0.93 \\ & +0.07 \\ & -0.23 \\ & -0.10 \\ & -0.40 \\ & +0.00 \\ & +0.50 \end{aligned}$	$\begin{aligned} & -0.28 \\ & -0.38 \\ & +0.52 \\ & +0.12 \\ & -\quad 0.13 \\ & +\quad 0.57 \\ & + \\ & + \\ & + \end{aligned}$	$\begin{aligned} & +0.37 \\ & -0.73 \\ & +0.97 \\ & -0.63 \\ & +0.15 \\ & +0.15 \\ & -0.15 \\ & +0.75 \\ & -0.75 \end{aligned}$
23	$\begin{aligned} & +0.82 \\ & -0.48 \\ & -1.28 \\ & +0.92 \\ & +1.12 \\ & +0.12 \\ & +1.88 \\ & +\quad 0.62 \end{aligned}$	$\begin{aligned} & +0.87 \\ & -0.05 \\ & + \\ & + \\ & -1.05 \\ & + \\ & + \\ & +0.20 \\ & + \\ & \hline \end{aligned} 0.00$	$\left\lvert\, \begin{aligned} & -0.40 \\ & + \\ & + \\ & -0.20 \\ & + \\ & + \\ & -0.70 \\ & -0.03 \\ & -0.30 \\ & + \\ & + \\ & -0.53 \\ & -0.23 \end{aligned}\right.$	+0.42 +0.62 -1.18 +0.12 -0.38 -0.08 +0.32 +0.12	26	$\begin{aligned} & -0.88 \\ & + \\ & + \\ & -0.18 \\ & + \\ & + \\ & 0.82 \\ & -1.30 \\ & + \\ & + \\ & \hline \end{aligned} 0.50$	$\begin{aligned} & -0.10 \\ & -0.60 \\ & +0.10 \\ & +0.60 \\ & +1.00 \\ & -0.50 \\ & + \\ & + \\ & -1.50 \end{aligned}$	$\begin{aligned} & +0.17 \\ & -0.33 \\ & +0.27 \\ & -0.13 \\ & -\quad 1.05 \\ & -0.45 \\ & +0.65 \\ & +\quad 0.85 \end{aligned}$	$\begin{aligned} & -0.33 \\ & -0.13 \\ & +0.17 \\ & + \\ & +0.27 \\ & -1.10 \\ & - \\ & -0.00 \\ & + \\ & +0.40 \\ & + \end{aligned} 0.70$

We have here 26×16 errors of reading of each scale. The sum of the squares of these errors is

$$
\begin{aligned}
& \text { for Royal Society's Metre } \\
& \text { for Ordnance Metre } \\
& 64 \cdot 24
\end{aligned}
$$

and from this we deduce the probable error of a single reading

$$
\begin{equation*}
\text { for Royal Society's Metre } \cdots \pm .674 \sqrt{\frac{487 \cdot 3^{8}}{416-104}}= \pm 0.842 \tag{I}
\end{equation*}
$$

for Ordnance Metre $\cdots \cdots . \pm .674 \sqrt{\frac{64.24}{416-104}}= \pm 0.306$
From this it appears that the probable error in observing a good line-as those on the Ordnance Metre, - is the same when the straight transverse wire is used as when the cross is used; for the probable error in the latter case is (see page 63) ± 0.31 and $\pm 0: 32$ in the case of two different observers. But the probable error of a bisection of the lines on the Platinum Metre is greater in the proportion of $2.75: 1.00$.

We shall now give in the following Table the mean results of the 26 comparisons.

Date.	Temp.	RSM	OM	Difference in Micrometer Divisiuns.	RSM-OM
1864.					
Aug. 1	$65 \cdot 16$	27.89 $h+44.01 k$	$31 \cdot 14{ }^{1} h+47.99 h$	+ $3.25 h+3.98 k$	+ 5.76
	65.20	$36 \cdot 18 h+38 \cdot 91 k$	$35.58 h+47.89 k$	$-0.60 h+8.98 k$	+ 6.69
, "	65.45	$35 \cdot 33 h+36 \cdot 83 k$	$37 \cdot 43 h+41.01 h$	+ $2 \cdot 10 h+4.18 k$	+ 5.00
	$65 \cdot 51$	$34 \cdot 01 h+36 \cdot 59 k$	$38.00 k+40.01 k$	+ $3.99 h+3.42^{h}$	+ 5.90
" 2	64.57	$35 \cdot 36 h+36 \cdot 24 k$	$39.51 k+40.11 k$	$+{ }^{+15}{ }^{h}+3.87^{k}$	+ 6.39
" "	64.77	$35 \cdot 29 h+36 \cdot 10 k$	$37.60 h+41.03 k$	+ $2 \cdot 314+4.93 h$	+ 5.77
	6.7 .88 63.76	$35 \cdot 51 / 2+37 \cdot 33 k$ $40 \cdot 00 h+38.86 k$	$36.60 h+40.38 k$ $46.81 h+40.19 k$	$+1.09 h+3.05 h$ +6.81	a $+\quad 3.30$ $+\quad 6.47$
	6.78 63.93 6.93	$40 \cdot 00 k+38 \cdot 86 k$ $31 \cdot 33 k+46 \cdot 4^{8} k$	$46.81 h+40.19 k$ $39.312+47.59$	$+6.81 h+1.33$ $+7.98 h+1.11$	$+\quad 6.47$ $+\quad 7.3$
	64.21	$38.8+h+37.13 k$	$3.9 .91 h+45 \cdot 28 k$	$-2.93 h+8.15 k$	$+\quad 4.17$
	63.90	$47.71 h+27.65 k$	$49.78 h+33 \cdot 51 k$	+ $2.07 h+5.86 h$	+ 6.32
	64.08	$40 \cdot 10 k+33.91 k$	$46.11 h+37.09 k$	$+6.01 h+3.18 k$	+ 7.31
Dec. 26	$38 \cdot{ }^{6}$	$6.70 h+7.55 h$	$29.66 k+32.39 k$	$+22.96 h+2+84 k$	+ 38.07
	$3^{8.35}$	$7.80 h+7.94 h$	$27.66 k+37.39 k$	$+19.86 h+29.45 k$	+ 39.39
, 27	$36 . \mathrm{J} 2$	$30 \cdot 35 k+16.59 k$	$57.03 h+42 \cdot 13 k$	$+26.68 h+25.54 k$	+ 41.59
" "	36.06	$19.40 h+28.61 k$	$48.73 h+47.68 k$	$+29.33 k+19.07 k$	+ $3^{8.53}$
" "	36.08	$23.03 h+26.55 k$	$48 \cdot 18 h+52 \cdot 9^{8} k$	$+25.15{ }^{\prime}+26.43 k$	+ 41.08
	36.23	$24.45 k+22.6 \mathrm{I} k$	$45.64 h+50.54 k$	+21.19h+27.93k	+ 31.13
28	35.57	$61.99 h+17.84 h$	$79.35{ }^{h}+52 \cdot 93 k$	+17.36h+35.09k	+ 41.80
" "	$35 \cdot 48$	$43.73 h+37.58 h$	$70.00 h+59.85 k$	$+26.27 h+22.27 h$	+ 38.65
" "	$35 \cdot 94$	$43 \cdot 65 h+34 \cdot 74 h$	$63.61 h+66.56$ $65.05 k+61.40 k$	$+19.96 h+31.82 k$	+41.26 +36.57
" ${ }^{\prime \prime} 29$	$35 \cdot 22$ $37 \cdot 33$	$42 \cdot 38 h+38 \cdot 15 k$ $47 \cdot 18 h+34 \cdot 53 k$	$65 \cdot 05 h+61 \cdot 40 k$ $69.56 h+60.53 k$	$+22.67 h+23 \cdot 25 k$ $+22.38 k+26.00 k$	$+36 \cdot 57$ $+38 \cdot 54$
	37.49	$40 \cdot 712+38 \cdot 19 k$	$66.05 h+62.41 k$	$+25 \cdot 34 k+24 \cdot 22 k$	+39.47
	37.60	$37 \cdot 83 h+40 \cdot 56 k$	$62.90 h+67.09 h$	$+25.07 h+26.53 k$	+ 41.10
" "	37.79	$32 \cdot 94 h+44.95 k$	$60.34 k+67.91{ }^{1}$	$+27.40 k+22.96 k$	$+40 \cdot 10$

3.

Let the excess of length of the Platinum Metre above OM, both being at 62°, be x_{82} and when both are at 32° let the difference be x_{32} : then the difference of length at the temperature t

$$
x_{t}=x_{38} \cdot \frac{62-t}{30}+x_{68} \frac{t-32}{30}
$$

The preceding Table for 26 values of t gives us 26 values of x_{t}, thus we obtain as many equations of condition between x_{39} and x_{00}. Applying to them the method of least squares, we get

$$
\begin{array}{r}
14.549724 x_{\theta 8}+0.684874 x_{39}-163.0507=0 \tag{3}\\
0.684874 x_{08}+10.080524 x_{3 s}-462.4393=0
\end{array}
$$

If we write A and B for the absolute terms of these equations, they become on eliminating x_{32} and $x_{\text {c9 }}$

$$
\begin{align*}
& x_{02}+.0689504 \mathrm{~A}-.0046846 \mathrm{~B}=0 \tag{4}\\
& x_{38}-.0046846 \mathrm{~A}+.0995217 \mathrm{~B}=0
\end{align*}
$$

restoring the values of A and B we get

$$
\begin{align*}
& x_{32}=+45.26 \tag{5}\\
& x_{62}=+9.08
\end{align*}
$$

These values substituted in the equations of condition give the following system of errors corresponding to the 26 comparisons.

No.	Error.	No.	Error.
	-		
5	-0.49	14	-1.69
2	-1.47	15	-1.30
3	-0.08	16	+1.83
4	-1.05	17	-0.74
5	-0.41	18	+1.03
6	-0.03	19	-0.85
7	+2.31	20	+2.41
8	+0.49	21	-0.75
9	-0.48	22	+4.81
10	+2.24	23	+0.29
11	+0.47	24	-0.83
12	-0.74	2.5	-2.59
13	-0.48	26	1.82

The sum of the squares of these errors is 66.03 , so that the probable error of a single comparison is

$$
\begin{equation*}
\pm 0.674 \sqrt{\frac{66 \cdot 03}{24}}= \pm 1.118 \tag{6}
\end{equation*}
$$

and the probable errors of x_{62}, x_{32} are consequently

$$
\begin{align*}
& x_{62} \ldots \ldots \pm 1 \cdot 118 \sqrt{.0690}= \pm 0.29 \tag{7}\\
& x_{32} \ldots \ldots \pm 1 \cdot 118 \sqrt{.0995}= \pm 0.35
\end{align*}
$$

4.

It is stated by Captain Kater with reference to the Platinum Metre-" this metre previous to being brought from Paris was compared with a Standard Metre by M. Arago, with all that care and ability which he is so well known to possess, and which so delicate an operation requires; the result was that the distance between the lines was found to be less than a metre by $\frac{1759}{1000}$ of a millimetre or $\cdot 00069$ of an inch ": the temperature of the bar being 32°.

We have ascertained that, both bars being at 32°, the Platinum Metre RSM is greater than OM by $45 \cdot 26 \pm 0 \cdot 35$, and we must now ascertain the length of OM at 32° with reference to $\mathbf{Y}_{s s}$ at 62°. For this purpose let $[a \cdot b],[b \cdot c]$ represent the yard and the small space on the bar OM, so that $[a \cdot c]$ represents its whole length; let the expansion of \mathbf{Y}_{65} be y_{55}, that of a yard of $O B, y_{55}+y$. Also at 62° let $[a \cdot b]$ exceed \mathbf{Y}_{65} (also at 62°) by x. Let α represent the fraction $\frac{3}{3689} 0, z$ the excess of $[\mu \cdot e]$ on OF above $y^{3}, \frac{8}{2} \mathrm{~F}, x^{\prime}$ the excess-at 62°-of \mathbf{F} above $\frac{1}{3} \mathrm{Y}_{65}, y^{\prime}$ the excess of the expansion of of above that of a foot of \mathbf{Y}_{55}, u the excess of $[u \cdot c]$ above $\alpha \mathbf{Y}_{55}$ at 62°, s the excess of [$b \cdot c$]
above $[\mu \cdot e$] at the temperature $62+f$ at which the comparison was made. Then we have the following equations:

$$
\begin{aligned}
{[\mu \cdot e] } & =3 \alpha \mathbf{F}+z \\
\mathbf{F} & =\frac{1}{3} \mathbf{Y}_{5 s}+x^{\prime}+f y^{\prime} \\
{[a \cdot b] } & =\mathbf{Y}_{s s}+x+f y \\
{[b \cdot c] } & =\alpha \mathbf{Y}_{5 s}+\alpha f y+u \\
{[\mu \cdot e] } & =\alpha \mathbf{Y}_{s 5}+3 a x^{\prime}+z+3 \alpha f y^{\prime} \\
\therefore s & =\alpha f^{\prime} y+u-3 \alpha x^{\prime}-z-3 a f^{\prime} y^{\prime} \\
\text { and }[a \cdot c] & =(1+\alpha) \mathbf{Y}_{55}+(1+\alpha) f y+x+s-\alpha f^{\prime} y+3 \alpha x^{\prime}+3 \alpha f y^{\prime}+z
\end{aligned}
$$

which last is the expression for the length of $\mathbf{O M}$ at the temperature t, \mathbf{Y}_{ω} being at the same temperature. At 62°, when $f=0$

$$
[a \cdot c]=(1+\alpha) \mathbf{Y}_{\mathrm{Db}}+s+z+x-\alpha f^{\prime} y+3 \alpha\left(x^{\prime}+f^{\prime} y^{\prime}\right)
$$

Now the difference of length of [ac], that is $\mathbf{O M}$, between the temperatures 32° and 62° is $30(1+\alpha)\left(y_{65}+y\right)$: hence the length of $\mathbf{O M}$ at 32° is

$$
\begin{gather*}
=(\mathrm{I}+\alpha) \mathrm{Y}_{\mathrm{Bb}}+s+z+x-\alpha f^{\prime} y-30(\mathrm{I}+\alpha) y+3 \alpha\left(x^{\prime}+f^{\prime} y^{\prime}\right) \\
-30(\mathrm{I}+\alpha) y_{55} \tag{8}
\end{gather*}
$$

When \mathbf{Y}_{55} is at 62° not 3°. The probable error of this expression arises from five different sources:

1. The comparison of $[b \cdot c]$ and $[\mu \cdot e]$
2. The determination of the crror of the space $[\mu \cdot c]$ on $\mathbf{O F}$
3. The comparisons of $[a \cdot b]$ with $\mathbf{Y}_{b 0}$
4. The comparisons of F with $\mathbf{Y}_{\text {ss }}$
5. The absolute expansion of $\mathbf{Y}_{5 s}$

Now from equations (2) and (6), pages 106, 107, the probable error of $x-(30+$ $\left.30 \alpha+\alpha f^{\prime}\right) y$ is ; putting $f_{1}=30+30 \alpha+\alpha f^{\prime}$

$$
\pm 0.412\left(.03212-.00310 f+.0003376 f_{6}^{\prime}\right)^{1}
$$

Also by equation (8), page 77, the probable error of $x^{\prime}+f^{\prime} y^{\prime}$ is

$$
\pm\left(.01171+.00126 f^{\prime}+.000049 f^{\prime 2}\right)^{ \pm}
$$

The value of f^{\prime} is 3.32 ; hence $f=33 \cdot 13$, and the probable errors specified become ± 0.226 and ± 0.128. This last when multiplied as in the expression for [a.c] by 3α becomes $\pm .036$. Now, page 108, equation (11), the probable error of s is $\pm .091$; and page 71, equation (47), the probable error of z is $\pm \cdot 098$; therefore the probable error of the determination of the length of OM at 32° is

$$
\pm\left\{(.091)^{2}+(.098)^{2}+(.226)+(.036)^{2}+\left(32.82 y_{53}\right)^{2}\right\}^{\frac{1}{2}}
$$

if for y_{65} we take the determination at page $90, y_{50}= \pm \cdot 0284$ this becomes

$$
\begin{equation*}
\pm\left\{(091)^{2}+(.098)^{2}+(.226)^{2}+(.036)^{2}+(.932)^{2}\right\}^{\frac{1}{2}}= \pm 0.969 \tag{9}
\end{equation*}
$$

The actual value of y_{55} just referred to is $6 \cdot 358$, hence $y_{55}+y=5 \cdot 9471$, and $30(1+\alpha)\left(y_{55}+y\right)=195 \cdot 14$. Subtracting this from the length of OM at 62° given at equation (22), page 110 , we get for the length of $\mathbf{O M}$ at 32°

$$
\begin{equation*}
\left(\mathrm{I} \cdot 09355^{8} 30 \pm \cdot 00000097\right) \mathbf{Y}_{85} \tag{Io}
\end{equation*}
$$

the yard $\mathbf{Y}_{\text {bs }}$ being at 62°.
The Platinum Metre at 32° exceeds this by 45.26 ± 0.35; hence we have finally for the length of this bar at its standard temperature

$$
\begin{equation*}
\text { Royal Society's Metre (à traits) }=(1 \cdot 09360356 \pm 0.00000109) \mathbf{Y}_{\text {os }} \tag{II}
\end{equation*}
$$

From this result it is to be inferred that the length of the Standard Metre referred to by M. Arago is

$$
\begin{equation*}
1 \cdot 09362280 \mathbf{Y}_{55} \tag{12}
\end{equation*}
$$

XV.

aUSTRALIAN 10 FEET STANDARDS.

The two ten feet Iron Bars $\mathbf{O} \mathbf{I}_{4}$ and $\mathbf{O} \mathbf{I}_{\mathbf{J}}$ were sent out, the former in December 1858 to Sydney for the Government of New. South Wales, and the latter in March 1862 to Melbourne for the Government of Victoria. These bars are of wrought iron and similar in section to the bar OI, described page 13. But they differ in the distribution of the points on the upper surface : in the bars $\mathbf{O} \mathbf{I}_{\mathbf{4}} \mathbf{O I}_{\mathbf{0}}$ the points are distributed as follows:

	b
a	c
$[a \cdot b]=[b \cdot c]=$ one yard	
$[c \cdot d]=$	d
	$[d \cdot e]=[e \cdot f]=[f \cdot h]=$ one foot
	$[f \cdot g]=[g \cdot h]=$ six inches.

1.

The comparisons of the subdivisions of $\mathbf{O} \mathbf{I}_{4}$ with one another, and with the Copy No. 55 of the Standard Yard, were made by Serjeant Jenkins, R.E., and Serjeant-Major (now Quartermaster) Steel, R.E., in the spring and summer of ${ }^{185} 5$.

	was compared with	\mathbf{Y}_{55}	;	105 comparisons.
[b.c]	" ",	\mathbf{Y}_{55}		145 comparisons.
$[c \cdot f]$		\mathbf{Y}_{55}		255 comparisons.
	$d \cdot e],[e \cdot f],[f$	together		115 comparis

Here by a comparison is to be understood a single reading of either extremity of the one measure with the same of the other measure.

The observations were taken in nearly the same numbers by the two observers, and the results are as follows: at $62^{\circ} 00$ Fabrenheit,-

The last three equations are equivalent to the following:

We have then for the values of the intervals as determined by the two observers the fullowing:

Differences.	Observers.		Mean.
	Stecl.	Jeakins.	
$[a . b]-Y_{b s}$	+ 47.3^{6}	$+49.08$	$+48.22$
$[l \cdot c]-Y_{s s}$	-51.86	-49.83	-50.85
$[c \cdot l]-\frac{1}{3} Y_{s}$	$+64.40$	+ 65.03	+64.72
[d.e] - ${ }_{3} \mathrm{Y}_{5}$	-60.30	-60.89	- 60.60
$[e . f]-\frac{1}{3} \mathbf{Y}^{3 s}$	- 4.05	- 3.53	- 3.79
$[f \cdot h]-\frac{1}{3} Y_{s s}$	$-25 \cdot 17$	-25.69	-25.43
$[a \cdot h]-{ }_{3}^{19} \mathbf{Y}_{5 s}$	- 29.62	-25.83	-27.73

The last line in this table being the sum of the other six gives for the length of the bar at 62° :

$$
\mathbf{O} \mathbf{I}_{4}=3 \cdot 33330560 \mathrm{Y}_{\mathrm{bS}}
$$

and for the subdivisions the following values:

$$
\begin{aligned}
& {[a \cdot b]=1.00004822 \mathbf{Y}_{55}} \\
& {[b \cdot c]=0.99994915 \mathbf{Y}_{55}} \\
& {[c \cdot d]=0.33399805 \mathbf{Y}_{55}} \\
& {[d \cdot e]=0.33327273 \mathbf{Y}_{55}} \\
& {[e \cdot f]=0.33332954 \mathbf{Y}_{55}} \\
& {[f \cdot h]=0.33330790 \mathbf{Y}_{55}}
\end{aligned}
$$

2.

The observations for the determination of the length of $O I_{0}$ were made in 1860 by Serjeant-Major Steel, R.E.:

Where by a comparison is to be understood a single reading of either extremity of the one measure with the same of the other.

The results of the comparisons are as follows, at $62^{\circ} \cdot \infty$

$$
\begin{aligned}
& {[a \cdot b]-\mathbf{Y}_{s 5}=+20.88} \\
& {[b \cdot c]-\mathbf{Y}_{i s}=-16 \cdot 27} \\
& {[c \cdot f]-\mathbf{Y}_{v 5}=+54 \cdot 34} \\
& {[d \cdot h]-\mathbf{Y}_{s 5}=+3 \cdot 19} \\
& {[c \cdot d]-[f \cdot h]=+53 \cdot 95} \\
& {[d \cdot c]-[f \cdot h]=+93 \cdot 49} \\
& {[e \cdot f]-[f \cdot h]=+64.80}
\end{aligned}
$$

Here we have more than sufficient data, and we must proceed by the method of least squares to find the values of the four foot-intervals. Let $[c \cdot d],[d \cdot e],[e \cdot f],[f \cdot h]$, be equal respectively to $\frac{1}{3} \mathbf{Y}_{i 5}+x, \frac{1}{3} \mathbf{Y}_{55}+y, \frac{1}{3} \mathbf{Y}_{5 s}+z, \frac{1}{3} \mathbf{Y}_{w}+u$; then our last five equations become,

$$
\begin{aligned}
x+y+z-51 \cdot 25 & =0 \\
y+z+w-3 \cdot 19 & =0 \\
x-w-53 \cdot 95 & =0 \\
y-w-93 \cdot 49 & =0 \\
z-w-64 \cdot 80 & =0
\end{aligned}
$$

From these we get

$$
\begin{aligned}
2 x+y+z-w-105.20 & =0 \\
x+3 y+2 z & -147.93
\end{aligned}=0
$$

whence

$$
\begin{aligned}
x & =-0.37 \\
y & =+41 \cdot 14 \\
z & =+12.45 \\
w & =-52.35
\end{aligned}
$$

We have therefore the following values for the intervals:

$$
\begin{aligned}
& {[a \cdot b]=\mathrm{I} \cdot 00002088 \mathbf{Y}_{55}} \\
& {[b \cdot c]=0.99998373 \mathbf{Y}_{5 s}} \\
& {[c \cdot d]=0.33333296 \mathbf{Y}_{s 5}} \\
& {[d \cdot e]=0.33337447 \mathbf{Y}_{55}} \\
& {[e \cdot f]=0.33334578 \mathbf{Y}_{55}} \\
& {[f \cdot h]=0.33328098 \mathbf{Y}_{55}}
\end{aligned}
$$

and the sum of these gives the length of the Bar at $62^{\circ} .00$

$$
\mathbf{O}:_{0}=3 \cdot 33333880 \mathbf{Y}_{05}
$$

3.

Each of the hars $\mathbf{O} \mathbf{I}_{4}$ and $\mathbf{O} \mathbf{I}_{\mathbf{b}}$ was compared with the Ordnance Standard \mathbf{O}_{1} with the following results:

The Bar $\mathbf{O I}_{4}$ was compared 66 times with \mathbf{O}_{1} at the mean temperature of $63^{\circ} \cdot 90$ Fabr.; and 17 times at the mean temperature of $36^{\circ} \cdot 70$, giving

$$
\begin{array}{lll}
\mathbf{O}_{1}=\mathbf{O} \mathbf{I}_{4}+30.56 & ; & \text { at } 36^{\circ} .70 \\
\mathbf{O}_{1}=\mathbf{O} \mathbf{I}_{1}+28.90 & ; & \text { „ } 63^{\circ} .90
\end{array}
$$

These two series of observations were by the same observer, Serjeant-Major Steel, R.E. From them it appears that the rate of expansion of $\mathbf{O} \mathbf{I}_{\mathbf{1}}$ is very slightly greater than that of \mathbf{O}_{1}; or for each \mathbf{I}° Fabrenheit

$$
\text { Expansion of } \mathrm{OI}_{4}=\text { Expansion of } \mathbf{O}_{1}+0.061
$$

From this we find

$$
\mathbf{O}_{1}=\mathbf{O} \mathbf{I}_{1}+29.02 \quad ; \text { at } 62^{\circ} .00
$$

Besides these, we have 50 comparisons at the mean temperature of $64^{\circ} \cdot 94$ by Serjeant Jenkins, R.E., which give

$$
\mathbf{O}_{1}=\mathbf{O} \mathbf{I}_{4}+28.43 \quad ; \text { at } 64^{\circ} \cdot 94
$$

which reduced according to the rate of expansion given alove is

$$
\mathbf{O}_{1}=\mathbf{O} \mathbf{I}_{4}+28.6 \mathbf{I} \quad ; \text { at } 62^{\circ} .00
$$

This agrees very closely with the former determination. The mean of the two gives finally at $62^{\circ} \cdot 00$ Fahr.

$$
\mathbf{O}_{1}=\mathbf{O} \mathbf{I}_{1}+28.8_{1}
$$

We are now able to infer the ratio of \mathbf{O}_{1} and $\mathbf{O} I_{5}$ for we have found

$$
\begin{aligned}
\mathbf{O} \mathbf{I}_{4} & =\frac{1 \mathrm{n}}{3} \mathbf{Y}_{55}-27.73 \\
\mathbf{O}_{\mathbf{1}} & =\mathbf{O} \mathbf{I}_{4}+28.8 \mathbf{1}
\end{aligned}
$$

and the sum of these equations gives

$$
\mathbf{O}_{1}=\frac{10}{3} \mathbf{Y}_{55}+1.08 \ldots \ldots \ldots(\alpha)
$$

The bars $\mathbf{O I _ { d }}$ and \mathbf{O}_{1} were compared together by Serjeant-Major Steel, R.E., 67 times at the mean temperature of $58^{\circ} \cdot 90$, and 30 times at the mean temperature of $44^{\circ} \cdot 70$, with results as follows:

$$
\begin{array}{ll}
\mathbf{O} \mathbf{I}_{6}=\mathbf{O}_{1}-3.82 & ; \text { at } 58^{\circ} \cdot 90 \\
\mathbf{O} \mathbf{I}_{6}=\mathbf{O}_{1}-4.07 & \text {; at } 44^{\circ} \cdot 70
\end{array}
$$

From this it appears that the expansion for I° Fahr. of $\mathbf{O} \mathbf{I}_{0}$ exceeds that of $\mathbf{O}_{\mathbf{1}}$ by

$$
\frac{4.07-3.82}{14.2}=0.0176
$$

and by this rate of expansion the difference in length of \mathbf{O}_{1} above $\mathbf{O} \mathbf{I}_{c}$ at $62^{\circ} .00$ is $3 \cdot 77$.

We have then the two equations

$$
\begin{aligned}
\mathbf{O} \mathbf{I}_{\mathrm{o}} & ={ }_{3}^{20} \mathbf{Y}_{\mathrm{s}}+5.47 \\
\mathbf{O}_{1} & =\mathbf{O} \mathbf{I}_{\mathrm{o}}+3.77
\end{aligned}
$$

which give,

$$
\mathbf{O}_{1}=\frac{10}{3} \mathbf{Y}_{\mathrm{ss}}+9 \cdot 24 \ldots \ldots \ldots\left(E^{2}\right)
$$

4.

In the preceding paragraph are contained two entirely independent resulty (α), (β), for the ratio of the Ordnance Standard \mathbf{O}_{1} and the Copy No. 55 of the Standard Yard. These results differ by $8 \cdot 16$ or -00000816 yard, which is, perhaps, larger than might have been expected. But the number of steps leading to each is large, and it is to be noted that the diameter of either of the dots on \mathbf{O}_{1} is about -000075 yard $=.0027$ inch.

The value of O_{1} obtained through $\mathbf{O I _ { 1 }}$ is the result of 620 comparisons by two observers, that obtained through $\mathbf{O} \mathbf{I}_{\mathrm{i}}$ is from 337 comparisons by one observer. If we, therefore, give the former result double the weight of the latter, we get finally

$$
\begin{aligned}
\mathbf{O}_{1} & =\frac{10}{3} \mathbf{Y}_{\mathrm{s5}}+\frac{2 \cdot 16+9.24}{2+1} \\
\text { or, } & \mathbf{O}_{1}=\frac{10}{3} \mathbf{Y}_{55}+3.80=3.333337 \mathrm{I} 3 \mathbf{Y}_{\mathrm{ss}}
\end{aligned}
$$

the temperature of both bars being $62^{\circ} \cdot 00$.
This determination agrees very satisfactorily with that given at page 94.

XVI.

detcrmination of The absolute expansions OF TIIE INDIAN 10rr. STANDARDS $I_{s} I_{\text {s. }}$.

1.

The two new Standard Bars for the Trigonometrical Survey of India are the same in section and in the disposition of the points on their upper surface as the Ordnance Intermediate Bar, described page 13. There is, however, no groove along the upper surface, and the small circular prepared surfaces are slightly depressed below the general surface of the bar. The lines are drawn on gold pins. One of the bars is of cast steel, hammered, tough, not hard, and remarkably homogencous. The other is of Baily's metal, an alloy formed in the proportions, - copper 16, tin $2 \frac{1}{2}$, zinc I. In the upper surface of each bar are eight thermometer wells; two, close together, in the centre of the left yard; two, close together, in the centre of the right yard, and two at (half an inch on either side of) the centre of the bar: besides these are two wells at one-fourth and three-fourths of the bar's length.* The first six are for one set of six thermometers, the other two for a set of

[^4]$$
\tau=\int_{-1}^{1}\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=a_{0}+\frac{a_{2}}{12} \cdots \ldots .(\alpha)
$$
and the mean of temperatures indicated by two thermometers placed at equal distances $\pm i$ ou either side of the centre is-
$$
\frac{1}{2}\left(t_{+i}+t_{-i}\right)=a_{0}+a_{2} i^{2} \ldots .
$$

In order, then, that the mean of the two thermometers may give the mean temperature of the bar, we must have $(\alpha)=(\beta)$ or

$$
\begin{aligned}
& i^{2}=I^{1} y \\
& i= \pm \frac{1}{2 \sqrt{ } 3}
\end{aligned}
$$

This gives us the proper distance from the centre at which to place tho thermometers. It is remarkable,and in the case of a bar supported on two points, rather unfortunate too, -that these positions coincide with the
two thermometers. In the thermometers of the first set, the degree is about 0.40 inch long, and is divided into tentha. These thermometers are constructed in pairs, one of each pair extending from 45° to 65°, and the other from 65° to 85°, each having one or two degrees in excess at either end : thus, when laid in their places on the bar, one pair have their bulbs close together at the centre of the left yard, the scales lying outwards; the second pair is similarly placed at the centre of the right yard, and the third pair have their bulbs close on each side of the centre of the bar. 'The second set of thermometers, a pair, extend cach from about 30° to 105°, and the degrees are subdivided into halves only.

The method of determining the co-efficient of expansion, of which an instance is recorded at page 78 , and all such methods, are open to the objection that the hot bar under observation is not in a state of repose but of change. The method of heating a bar with steam until it assumes under 212° a coustant or apparently unchauging length, escapes from this objection, but is open to another as great or greater, viz., that the bar is done violence to and may not precisely return to its former length. If a bar of iron be heated from 62° to 212° it is so extended $150 \times 6=900$ millionths of its length; and if the modulus of elasticity be, say $30,000,000$ and the section two square inches, the force required to produce the above extension is $60 \times 900=54,000$ lbs. or 24 tons. As a standard of length can seldom be used at a temperature exceeding 90°, it seems unnecessary that it should be heated in expansion experiments above 100° at the outside.

In the experiments to be recorded here, the hot bar was kept steadily at a coustant temperature during each comparison, and the stability of the microscopes was not counted on further than in ordinary comparisons. The bars were compared, as follows :-

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{B}} \text { cold, with } \mathrm{I}_{\mathrm{B}} \text { cold. } \\
& \mathrm{I}_{\mathrm{B}} \text { hot, with } \mathrm{I}_{\mathrm{B}} \text { cold. } \\
& \mathrm{I}_{\mathrm{B}} \text { cold, with } \mathrm{I}_{\mathrm{S}} \text { hot. } \\
& \mathrm{I}_{\mathrm{B}} \text { hot, with } \mathrm{I}_{\mathrm{S}} \text { hot. }
\end{aligned}
$$

An irregular number, not generally exceeding four comparisons, were made each day. The experiments are divided into two series; the first extending from 17 th February 1865 until the I 7 th of March; the second from the 2 gth of April to the 10 th of May. In the first series the temperatures of the cold bar were from 39° to 4°, and of the hot from 74° to 99°; in the second series the cold bars were from 54° to 60°, and the hot from 75° to 96°. Inasmuch as they did not extend in temperature either high enough or low enough, the set of six thermometers were not used ; but in their place the set of two at one-fourth and three-fourths the length of the bar. These thermometers were subjected to very careful comparisons which will be recorded further on.

[^5]$$
\frac{1}{\mathbf{s}}\left(t_{-i}+t_{0}+t_{+i}\right)=a_{0}+\frac{1}{3} a_{1} i^{2} \cdots(\gamma)
$$
and in order that this may agree with the mean tomperatnre of the bar
\[

$$
\begin{aligned}
f_{3}^{2} & =\frac{1}{1 y} \\
i & = \pm \frac{1}{2 \sqrt{2}}
\end{aligned}
$$
\]

which in a 10 ft . bar would indicate a position about 18 inches from either end.

In each comparison the bars were "observed" in the following order ; supposing, for instance, one cold and the other hot :-

1. Cold bar.
2. Hot bur.
3. Hot bar.
4. Cold bar.
the bars being interchanged as rapidly as possible. Two observers always worked simultaneously. The following table shows the order and succession of the different readings forming an observation : A and B are the two observers:-

Order.	Mier.	$\begin{gathered} \text { Left } \\ \text { Thermer } \end{gathered}$	$\underset{\text { Thight }}{\text { Riucur }}$	$\underset{K}{\text { Micr. }}$	Order.
1		A	B		1
2	A	. .		B	2
3	A			B	3
\pm		A	B		4
5		B	A		5
6	B			A	6
7	B			A	7
8		B	A		8

The two readings on each horizontal line are made simultaneously, and there mare altogether four readings of each micrometer and four of each thermometer. This constitutes the "observing" of a bar in these expansion experiments, and contains 16 readings. Thus, each comparison involves 64 readings. Each bar lies between two long copper tanks full of water; in the case of the cold bar, the water and bar together take the (cold) temperature of the room; in the case of the hot bar, a current of hot water at a fixed temperature runs continually into the tanks and as continually runs out, provision being made that the tanks neither begin to empty nor to overflow. The water is heated outside of the building and is conveyed in through the wall by pipes; passing, in the interior of the room, through flexible tubes in order to allow the bars to be moved about and interchanged.

We shall now refer to the drawing, Plate IX, which is an isometric projection of the interior of the room, and explain the different parts of the apparatus.

This drawing shows the boxes of the two bars, one under the microscopes, the other in the middle of the room. These two boxes are the same in all respects.
aaaa is a strong plank of mahogany, built up, about four inches in depth.
$b b b^{\prime} b^{\prime} \ldots$. . two closed copper tanks extending the whole length of the mabogany plank, and towards either side of it.
cccc..... pieces of iron screwed to the plank, and holding the copper tanks steadily in their proper position.
deld... . . vertical tubes communicating wich the water in the tanks, allowing a thermometer to be inserted in each.
$e e$. a vertical piece of brass tube secured below to the plank, open at its upper extremity. From it branch off
$f f^{\prime}$. tubes connecting it with
ggg'g' . . . bent tubes connecting the two tanks.
h_{h}. a flexible tube by which the supply of water enters $e e$, and passing through $f f^{\prime}$ and by $g g^{\prime}$ enters the two tanks, each tank in two places.
i........ a bent tube connecting the lower parts of the two tanks, and from whence the water is discharged through
h^{\prime}. a flexible tube carrying away the water from the tanks, one at each end of the tanks.
i^{\prime}. a tap regulating the amount of the discharge.
j. a tube joining the two tanks at their upper surfaces and the middle of their length, causing the water of the two tanks to commenicate.
$j^{\prime} . \ldots . .$. a bent tube connecting with and opening into j.
$j^{\prime \prime} \ldots .$. a vertical tube into which j opens. This tube is open above, and below communicates into
$h^{\prime \prime}$. a flexible tube carrying away the overflow of tanks.
$k k^{\prime} \quad . . .$. . two strong vertical plates of iron firmly screwed to the plank. There are two of these on each side of the box, and opposite one another.
$l l^{\prime}$. cross bars of iron, supported by and screwed to, the upper extremities of $l k k$. 'The holes in $l l$ ' throagh which the screws pass are slotted, or enlarged, so that $/ l$ admits of a slight adjustment iu position. From $l l$ are suspended the two rollers which carry the bar.
$m m^{\prime} . . .$. screws whereby the rollers are elevated or depressed, and so the bar is made horizontal or the focal adjustment varied.
n....... the extremity of the bar.
00^{\prime}. apertures for reading the thermometers; each covered with a plate of glass.
$p p^{\prime} . . .$. . thick plates of brass strongly screwed to the plank.
$q q q^{\prime} q^{\prime} . .$. . long steel screws working in the plates $p p^{\prime}$, and which support on their points the whole weight of the box, bar, aud water.
$r r^{\prime} . \ldots .$. . small iron trucks, each having two rollers, which receive the points of the screws $q q q^{\prime} q^{\prime}$, and consequently bear all the weight of box, bar, and water.
sss's' mahogany rails on which the trucks run, and by which the box is run under the microscopes or removed from that position.
titt t ' posts carrying the front extremities of these rails.
uuu'u' two strong frameworks of carpentry supporting the rear extremities of the rails, and screwed to the floor of the room.
$v v v^{\prime} v^{\prime} . \ldots$ inner frames which slide vertically, and with the least possible friction, inside $u u u^{\prime} u^{\prime}$.
$s, s_{,} . . .$.
wwww counterpoise weights. There are eight weights in all, four to each sliding frame.
AAA the stone piers.
BBB the mahogany beam shown in front view, Plate III.
The tanks are supplied with hot water through the flexible tube h. The water rising up in the tube ee flows along f and f^{\prime} and each of these streams is again divided into two by the bent tubes $g g^{\prime} g^{\prime} g^{\prime}$. If the taps i^{\prime} at each end of the box be left closed the water will, in overflowing, run out by the tube $\dot{\chi}^{\prime} j^{\prime \prime \prime}$; and thence away by the flexible tube $h^{\prime \prime}$. But, in order that no part of the water may be still, and therefore liable to cool, it is allowed to run away by the flexible tubes $l^{\prime} l^{\prime}$ from the extremities of the box. If the taps i^{\prime} were left open the tanks would empty, and they have therefore to be so regulated that there shall be always water escaping by the overflow tube h. This tube discharges into a lead pipe which crosses the passage p (Plate II.), and in the upper surface of this lead pipe is an orifice about two inches long by which the water can be seen running along the pipe; this orifice is kept under occasional observation, as, if there be no water passing through the pipe, the tanks may be emptying.

Thus, a continuous stream of water coming into the room from without, passes through the tanks, and thence out of the room again. This current has generally been kept up on the days of observation from 6 a.m. until 5 p.m. The tubes being flexible, there is no hindrance to the moving of the bars from one part of the room to another, runniog them (on their trucks $r r^{\prime}$) along the rails ss'. The hot bar alone has a current of water passing through its tanks. Cold water might have been caused to pass continually through the tanks of the cold bar; but this was found unnecessary, as the cold bar is not materially influenced by the presence of the hot bar. Each box is supplied with the necessary tubing, as they are heated alternately. The same bar has remained in the same box during all the experiments.

It is of much importance that the bars be rapidly interchanged, and that without much exertion to the two observers who have to manipulate them; for the weight of each box when the tanks are full is 365 lbs. The boxes, when not under observation, rest, as will be seen in the drawing, on the points of the four screws $q q q^{\prime} q^{\prime}$. By driving these screws the box is of course raised, and by drawing the scress the box is let down. Resting by means of these screws on the little cast-iron trucks $\operatorname{rr}^{\prime}$, the boxes are moved with a very slight pressure, along the rails. When the box is brought under the microscopes, and so also over the carriages (marked $g g g^{\prime} g^{\prime}$ in Plate III,) the screws $q q q^{\prime} q^{\prime}$ are simultaneously worked by the two observers, one at each end of the box; and so the box, being lowered, takes its bearing on the carriages gqg'g', and after a few more turns of the screws $q q q^{\prime} q^{\prime}$, is entirely free from the trucks. The trucks might now be removed, but they are left untouched so as to be ready to receive the screws' points when it is intended again to move the box. In order to remove the box from position under the microscopes, it must be taken off the carriages $g g^{\prime} g^{\prime}$; this is effected simply by driving the screws $q q^{\prime} q^{\prime} q^{\prime}$ (simultaneously, each observer working with both hands) : immediately after the points come into contact with the trucks, the carriages are relieved of the weight which is transferred to the trucks, and the box is then rolled away.

But it is necessary for the interchange of two boxes that one pass the other. This is effected by lowering one of the boxes, that which has no current passing through the tanks, by means of the sliding frames $v v v^{\prime} v^{\prime}$. It will be seen that the upper part of this frame carries a rail which is in one and the same straight line with $s s^{\prime}$ so that there is no interruption to the passage of a bar over the sliding frame, but if, when the box is on this part of the rails, that is over the sliding frames, it receives a slight pressure from above it will begin to descend while the counterpoise weights commence to ascend. A very little pressure then lowers the box nearly to the floor of the room; this is very easily and rapidly effected by the two olservers, one at each end. When the box is down there is of course an interruption of the rails; this is bridged over by a short piece of mahogany of the same section as the rails. Thus when the one box is down the other is free to pass from front to back of the room, or vice versâ.

Suppose now the cold bar has just been observed, and it is required to substitute for it the hot bar which is standing on the rear portion $s s_{1,}$ of the rails. The former is released from the carriages and transferred to bearings on its trucks; it is then run back, and on arriving at the sliding frame is allowed to go down to the floor; the bridge is then put on over the place of each sliding frame, and the hot bar is moved to the front and brought under the microscopes. This operation is effected with great facility.

When both bars are hot, the current of water must cease passing through the box that is lowered while it is in that position.

When either box is on the carriages $g g g^{\prime} g^{\prime}$ it is of course perfectly under control for all adjustments transverse and longitudinal; the vertical adjustments being made by the screws $m m^{\prime}$.

The cover of each bar box, by which the hot air is confined from rising upward or the cold air of the room from striking downward on the bar, is formed of several strips of mahogany half an inch thick, and covered with flannel, whose breadth is just equal to the
distance apart of the tanks. These pieces are pressed down between the tanks, and so by the softness of the flannel fit nearly air-tight. The upper surface of these pieces is flush with the upper surface of the tanks. Apertures covered with glass are provided for the proper reading of the thermometers. This cover is interrupted just over each of the terminal lines of the bar, and an opening of about an inch left-extending across from tank to tank. Into this opening a small rectangular block of wood is fitted, whose under surface is very nearly, but not quite, in contact with the bar. A vertical cylindrical hole is bored in this piece of wood which exposes a small circular part of the surface of the bar to view, in the centre of which is the gold pin on which is drawn the line. Thus only a very small bit of the surface of the bar is exposed to the air in the reading of the lines. In order to allow the light of the candle to fall on the dot, the cylindrical hole just mentioned is cut away in a slope towards the light.

The boxes are open at the extremities; but to prevent the cold ail rushing in when the tanks are hot, the ends are lightly packed with prepared cotton. The tanks are about half an inch longer than the bars at cither extremity.

It is scarcely necessary to go into detail as to the mode of support of the bars further than to say (1) each bar was supported on two rollers, at the distance given by the formula, page 28 ; (2) each roller is held (by its axle) between two parallel rectangular plates of steel 8 inches long by 2 inches in width, framed together at the distance of 1.75 iuch apart; (3) these plates swing on a knife edge carried by the crossbar $l l$, so that the roller is free to move in an arc of a circle, the axis of the roller describing a cylindrical surface whose radius is seven inches; (4) the knife edge is capable of being raised or lowered by the screws mm^{\prime}, and so the rollers are raised or lowered (see end view, fig. 5, Pl. X.). By this means the bar is at the most perfect liberty to expand or contract.
. The mode of supply of hot water will be understood from Plate II. ; α is a cylindrical cistern of sheet-iron, 37 inches in vertical length aud $22 \frac{1}{2}$ inches in diameter ; into it enter three pipes, one from the centre below vertically upward, another from above vertically downward, another from the side horizontally and reaching to the middle of the cylinder. Each of these pipes is furnished at its extremity with a "rose" like that of a watering-pot, the holes being fine and regular. By the first mentioned pipe hot water enters the cylinder; this water having been carried underground from a cylindrical boiler in an adjoining workshop. The upper pipe supplies cold water; β, γ, are taps holding in control the supplies of hot and cold water. The water in the boiler is heated some degrees above the heat required to be maintained in the reservoir α. The rose has the effect of preventing the hot water entering in as it were in a mass, it divides it into a multitude of fine streams which necessarily ascend, and so are constrained to mix generally with the water in the reservoir before reaching the top. Similarly, the rose attached to the supply pipe for cold water divides that supply into a number of fine streams whose tendency is to go to the bottom of the reservoir, thus getting well mixed with the hot water. The purpose of the rose on the third pipe, which passing through the walls of the bar room supplies the copper tanks, is, that water may be gathered from different points of the reservoir, so as to get the average temperature at those points. In order to show the temperature of the water that is escaping through the pipe into the bar room the bulb of a long thermometer is inserted into the rose. Any variation in the heat of the water is immediately shown by this thermometer. An assistant is told off to the duty of keeping this thermometer at a constant reading by regulating the taps $\beta \gamma$.

It is not possible to maintain a supply of water at a precisely uniform temperature; the thermometer will show oscillations, but these are easily kept at the u'orst within $\pm 2^{\circ} \cdot 5$ of the required temperature. These oscillations are performed in very short periods of time, as 30 seconds, so that it is very easy to make certain that the mean temperature of the water discharged in any period of five minutes shall be within a very small fraction of a degree of the required temperature. And it is to be remembered, that since the tanks take about to minutes to discharge, the small variations of temperature of the water which
enters them, taking place as they do in very short intervals of time, do not produce similar variations of temperature in the tanks. Here the variations of temperature are very much slower and very much smaller, and in their influence on the bar generally insensible. Even with the existence of small sensible oscillations about a mean temperature there is this advantage above the method of observing a bar steadily cooling, that sometimes we observe the bar in the state of expanding and sometimes in the state of contracting, the one as often as the other, and thus a constant error is avoided; while however, at the same time we might a priori expect to get greater discordances than would be brought out in observing a bar steadily cooling.

During part of the observations the thermometer wells were filled with oil, during another part with mercury, and in the last series the air was simply excluded by packing round lightly over the bulbs with a very small piece of prepared cotton.

2.

The four thermometers $4219,4226,4222,4220$, used in the observations for the determination of the expansion of the bronze and steel bars have been compared with the Indian Standard Thermometer, No. 4142 (made by Casella).

For the determination of the errors of this Standard, (I) the boiling and freezing points were examined; (2) the calibration errors were determined for every five degrees from 32° to 97°; (3) the thermometer was compared with the Ordnance Standard Thermometer, No. 3241.

The readings of the boiling and freezing points were determined on the morning of March 22. The method of boiling the thernometer* has been described already. When the mercury had assumed a steady position under the influence of the steam, the manometer indicating no pressure, the thermometer was read four times at intervals of about five minutes. The following are the readings :-

					Heading.
	By Quartermaster Steel, R.E.				$212^{\circ} \cdot 20$
	Captain Clarke	"	$212^{\circ} \cdot 19$
	Quartermaster Stcel	"	\ldots	...	$212^{\circ} \cdot 19$
	Captain Clarke				$212^{\circ} \cdot 2$

The thermometer was then removed from the steam, and having been allowed a few minutes to cool, was placed with its bulb in finely pounded ice. When the mercury had become stationary, readings were taken at intervals of about five minutes, the ice being removed and freshly adjusted round the bulb during the intervals of the reading. The results are as follow:-

By Quartermaster Steel	\ldots	\ldots	\ldots	$31^{\circ} \cdot 99$
" Captain Clarke \ldots	\ldots	\ldots	\ldots	$32^{\circ} \cdot 00$
"Quartermaster Steel	\ldots	\ldots	\ldots	$32^{\circ} \cdot 00$
"Captain Clarke \ldots	\ldots	\ldots	\cdots	$32^{\circ} \cdot 00$

It remains only to remark that whether in the steam or the ice, the tube of the thermometer was in an accurately horizontal position.

The reading of the barometer at the time of the boiling of the thermometer was 29.912 in . (being corrected for index error and reduced to 32° Fahr.) The height of the

[^6]cistern was 4.50 feet above the thermometer; allowing for this, we have a pressure of 29.917 in. The error, therefore, of the thermometer at 212° is*-
$$
212^{\circ} \cdot 20-212^{\circ}+1 \cdot 680(29 \cdot 905-29.917)
$$
or $+0^{\circ} \cdot 18$. Hence the correction to the reading of the thermometer at any temperature t on account of the error in the mean length of one degree is-
$$
-0^{\circ} \cdot 0010\left(t-32^{\circ}\right)
$$
*The line 212° on Fahrenheit thermometers, or 100° on tho Centigrade thermometans, represents the tem-
perature of steam under Laplace's standard atmospheric pressure, or a bsrometrice reading of 0.76 ourse (after
correction to $3^{\circ} \mathrm{F}$.) in the latitude of 45°. This pressure in any other latitude λ, will be represented by a
column of mercury whose height is
$0.76 \frac{\text { Gravity at latitude } 45^{\circ}}{\text { Gravity at latitudo } \lambda}$
$=0.76 \frac{1+n \sin ^{2} 45^{\circ}}{n+n \sin ^{2} \lambda}$
$=0.76\left(1+\frac{n}{2} \cos 2 \lambda\right)$
here $n=\frac{6}{2} \frac{1}{85}-{ }_{26} \frac{175}{}=\cdot 005250$, and $0 \cdot 76$ metre $=29.9215$ inches, supposing the metre to be 39.3704 inches. The standard pressure then in latitude λ is-
$$
29.9215^{\text {in }}(1+\cdot 002625 \cos 2 \lambda)
$$

But this supposes the barometer to be at the level of the sea. If the obsorvation be made at some altitude above the sea, we must make allowance for the alteration of gravity arising from this cause. Suppose the observer stationed at the top of a hill, whoso height is h (feet), and its form a cone with axis vertical. Let G be the force of gravity, or attraction of the earth, at the base of the cone, then if a be the radius of the earth, its attruction at the distance h above its surface

$$
=G\left(1-\frac{2 h}{a}\right)
$$

and to this we have to add the attraction of the conical hill. Now, the attraction \mathbf{A}, of a cone whose vertical angle is $2 a$, the length of its axis h, and density δ, upon a particle at its apex, is

$$
A=2 \pi h \delta(1-\cos \alpha)
$$

and supposing the hill to be of half the menn density of the eurth we should have $G=\frac{8}{3} \pi a b$

$$
\therefore \frac{A}{G}=\frac{3}{4} \frac{h}{a}(1-\cos a)
$$

The total attraction therefore exercised upon the barometric column under the circumstances is

$$
\mathrm{G}\left(1+\frac{h}{4}(\mathrm{r}-\cos a)-2 \frac{h}{a}\right)
$$

If the place of observation be on an elevated plane at the height h above tho sen, then $a=90^{\circ}$, and the attraction

$$
=G\left(1-\frac{h}{a} \frac{h}{a}\right)
$$

The column of mercury, then, to indicate the same utmospheric pressure must be increased in the proportion of $\mathrm{I}: \mathrm{I}+\frac{\pi}{4} \frac{h}{a}$; that is, the height of the column must be

$$
\begin{aligned}
& =29.9215^{\text {in }}\left(1+\frac{3}{4} \frac{h}{a}+\cdot 002625 \cos 2 \lambda\right) \\
& =29.9215^{\text {in }}+\cdot 0785 \cos 2 \lambda+\cdot 00000179 h \dagger
\end{aligned}
$$

According to the determination of Larlace from Dalton's oxperiments (Mécanique Céleste, Book X., Ch. 1.) the elastic force of vapour at $100^{\circ}+i$ centigrade is-

$$
F=0.76^{\mathrm{m}}(10) 0^{\circ} 0154547 i-0^{\prime} 0000625836 i^{2}
$$

hence if μ be the modulus of the common system of logarithme,

$$
\frac{\mu \cdot d \mathrm{~F}}{\mathrm{~F} \cdot d i}=0.0154547
$$

We next come to the process of calibration. This has already been described generally. A column of $60^{\circ} \cdot 2$ was broken off, and by it were compared the capacities of the tube from 32° to 92°, from 92° to 152°, and from 152° to 212° : these capacities we represent by $[32 \cdot 92],[92 \cdot 152],[152.212]$. The three spaces were compared five times. As the column is liable to variation of length from variation of temperature, which cannot be avoided, it is assumed that the column is not the same length in two different comparisnns. In order that it may be safely assumed to remain constant during one comparison of the space, the observations are made and recorded as quickly as is consistent with accuracy. The following is the order of the readings: suppose the column so placed that its ends read approximately $31^{\circ} .6$ and $91^{\circ} .8$; then, (1) the line $31^{\circ},(2)$ the end of the column $31^{\circ} \cdot 6,(3)$ the line 32°, are successively brought under the fixed wire of the microscope and the micrometer screw read, (4) the microscope being slid along its rails until the cross wire nearly bisects the line 91°, - this line, (5) the end of the column $91^{\circ}, 8$, (6) the line 92° are successively brought under the cross wire of the microscope and the micrometer screw read. The thermometer remaining untouched, all these readings are repeated in the inverse order, viz., $92^{\circ}, 91^{\circ} .8,91^{\circ} ; 32^{\circ}, 31^{\circ} \cdot 6,31^{\circ}$.
when $i=0$. So that if δF be the increment of pressure corresponding to the increment of temperature δi, at the boiling point,

$$
\begin{aligned}
\delta \mathrm{F} & =\frac{0.76}{\mu} 0.0154547 \delta i \\
\text { or } \delta \mathrm{F} & =.02704 \delta i
\end{aligned}
$$

From the more recent investigations on this subject by M. V. Regnault (Mémoires de l'Académic Royale des Sciences de l'Institut de France, tom. xxi.), it appears that the elnstic force of vapour is, from 0° to 100° centigrade, verg accurately represented by the formula

$$
\log F=a+b \alpha^{t}-c \beta^{t}
$$

where t is the tempernture centigrade, and

$$
\begin{aligned}
\log \cdot a & =0.006865036 \\
\log \cdot \beta & =\overline{\mathrm{I}} \cdot 9967249 \\
\log \cdot b & =\overline{2} \cdot 1340339 \\
\log \cdot c & =0.6116485 \\
a & =4.7384380
\end{aligned}
$$

F being expressed in millimotres. Here

$$
\frac{d F}{d t}=\frac{F}{\mu^{2}}\left(b a^{t} \log \alpha-c \beta^{t} \log . \beta\right)
$$

the value of which when $t=$ Ioo is 27.217 millimetres, or 0.02722 of a metre which does not differ materinlly from the result obtained above from Laplace's formula.

From this, then, it appears that the variation of pressure corresponding to a variation of temperature, when the pressure is expressed in inches, and the temperature in degrees Fiblirenheit, is

$$
\begin{aligned}
8 \mathrm{~F} & =\frac{0.2722}{18} 39.37 \delta t=0.595^{\delta t} \\
\text { or, } 8 t & =\mathrm{I} \cdot 680 \delta \mathrm{~F}
\end{aligned}
$$

Hence, if ind be the standard barometric pressure at the station of observation, B the actual height (reduced to 32°) of the barometer (differing but slightly from the standard beight) at the time the thermomoter is boiled then the temperature of the steam is

$$
212^{\circ}-1.680(3-B)
$$

and if T bo the reading of the thermometer

$$
T-212^{\circ}+1.680(\mathbf{1}-\mathrm{B})
$$

is the erior of the thermometer at the boiling point. At Southampton $\mathrm{H}^{\circ}=29.9054$

The form in which the observations are recorded, is as follows:-

Part bisected	Left extremity of Column.						Right extremity of Column.						Sum or Difference.
	'Tube.	Mier. (1)	Mier. (4)	Mean.	Fraction.	Decimal.	Tebe.	Micr. (2)	Micr. (3)	Mean.	Fraction.	Decimal.	
Line -	3 31 31.6	209	208	209	$\underline{185}$		9i	217	216	217	102		
Mercury -	31.6	440	439	44°	416	$\cdot 445$	y1.8	5.34	535	535	420	-243	. 202
Line -	32	625	624	625			92	637	636	637	420		
Line -	91	211	211	211			151	208	208	208			
Mercury -	91.5	431	$43+$	433	197	470	${ }^{1} 51.7$	516	516	516	$\underline{110}$.263	$\cdot 207$
Line -	92	630	630	630	+19		152	627	625	626	418		
Line -		211	211	211			215	208	207	208			
Mercury -	151.3	33^{8}	335	337	291	. 698	211.5	411	$+16$	$4^{1}+$	218 $+2+$. $51+$	$\cdot{ }^{8} 8+$
Line -		629	628	628	417		212	633	632	6,32	+2+		

The five comparisons of these three spaces give the following results:-

Space.	Equivalent.					
	Comp ${ }^{\text {n }} 1$.	Comp ${ }^{\text {a }}$.	Compr ${ }^{\text {s. }}$	Compr 4.	Comp ${ }^{\text {a }} 5$.	Mean.
[32.92]	$\mathrm{C}_{1}-\cdot 195$	$\mathrm{C}_{2}-.206$	$\mathrm{C}_{3}-171$	$\mathrm{C}_{4}-.217$	$\mathrm{C}_{5}-.202$	$\mathrm{C}_{\mathrm{o}}-198$
[92.152]	$\mathrm{C}_{1}-.204$	$\mathrm{C}_{2}-.214$	$\mathrm{C}_{3}-18_{5}$	$\mathrm{C}_{+}-217$	$\mathrm{C}_{5}-207$	$\mathrm{C}_{0}-1205$
[152.212]	$\mathrm{C}_{1}-1.165$	$\mathrm{C}_{2}-196$	$\mathrm{C}_{3}-151$	$\mathrm{C}_{+}^{+}-188$	$\mathrm{C}_{5}-18_{+}$	Co- 17^{6}

In this table, $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5}$ are the lengths of the column in the corresponding comparisons; C_{0} is the mean of these lengths. From this it appears, that-

$$
\begin{aligned}
{[32.92] } & =\frac{1}{3}[32 \cdot 212]-0^{\circ} .005 \\
{[32 \cdot 152] } & =\frac{2}{3}[32.212]-0^{\circ} .017
\end{aligned}
$$

The spaces $[32 \cdot 72],[42.82],[52 \cdot 92]$ were next compared by means of a column of 40°; and the spaces $[32 \cdot 62],[42 \cdot 72],[52 \cdot 82],[62 \cdot 92]$ by means of a column of 30°, the results are shown in the accompanying table:-

Space.	Equivalent.				
	Comp" 1.	Compr ${ }^{2}$	Comp ${ }^{\text {a }}$.	Comp ${ }^{4}$ 4.	Mean.
[32.72]	$\mathrm{C}_{1}+354$	$\mathrm{C}_{2}+343$	$\mathrm{C}_{5}+333$	$\mathrm{C}_{4}+325$	$\mathrm{C}_{6}+\mathrm{r} \cdot 339$
[42.82]	$\mathrm{C}_{5}+.227$	$\mathrm{C}_{3}+209$	$\mathrm{C}_{3}+197$	$\mathrm{C}_{+}+186$	$\mathrm{C}_{0}+205$
[52.92]	$\mathrm{C}_{1}+.283$	$\mathrm{C}_{2}+\cdot 278$	$\mathrm{C}_{3}+269$	$\mathrm{C}_{4}^{+}+25^{8}$	$\mathrm{C}_{0}+27^{2}$
[32.62]	$\mathrm{C}_{1}{ }_{1}+198$	$\mathrm{C}_{3}^{\prime}+\cdot 186$	$\mathrm{C}_{3}^{\prime}+204$	$\mathrm{C}_{4}^{\prime}+$ +194	$\mathrm{C}^{\prime}{ }_{0}+195$
[42.72]	$\mathrm{C}^{1}+1.146$	$\mathrm{C}^{\prime}{ }^{\prime}+\cdot 13^{8}$	$\mathrm{C}_{3}+\cdot 143$	$\mathrm{C}_{4}^{+}+\cdot \mathrm{I} 29$	$\mathrm{C}^{\prime}{ }_{0}+1{ }^{\text {c }} 39$
[52.82$]$	$\mathrm{C}^{\prime}{ }^{\prime}+133$	$\mathrm{C}^{\prime}{ }^{\prime}+.129$	$\mathrm{C}_{3}+.129$	$\mathrm{C}_{4}^{4}+\cdot 108$	$\mathrm{C}^{\prime}{ }^{\prime}+\cdot 125$
[62.92]	$\mathrm{C}^{\prime}{ }_{1}+\cdot 133$	$\mathrm{C}^{\prime}{ }_{2}+121$	$\mathrm{C}_{3}^{\prime}+\cdot 116$	$\mathrm{C}_{4}^{\prime}+\cdot 117$	$\mathrm{C}^{\prime}+1.122$

Now in order to determine the errors of the division lines $42^{\circ}, 52^{\circ}, 62^{\circ}, 7 \mathbf{7 2}^{\circ}, 82^{\circ}$, let-

$$
\begin{aligned}
& {[32 \cdot 42]=\frac{1}{6} m+x_{4}} \\
& {[32 \cdot 52]=\frac{2}{6} m+x_{6}} \\
& {[32 \cdot 62]=\frac{3}{6} m+x_{6}} \\
& {[32 \cdot 72]=\frac{4}{6} m+x_{7}} \\
& {[32 \cdot 82]=\frac{5}{6} m+x_{8}} \\
& {[32 \cdot 92]=m}
\end{aligned}
$$

then we get from the preceding comparisons, putting $\mathrm{C}_{0}+\cdot 200=\mathrm{C}, \mathrm{C}_{0}^{\prime}+\cdot 100=\mathrm{C}^{\prime}$,

$$
\begin{array}{ll}
\frac{4}{6} m+x_{7} & =\mathrm{C}+.139 \\
\frac{4}{6} m+x_{8}-x_{4} & =\mathrm{C}+.005 \\
\frac{4}{6} m-x_{5} & =\mathrm{C}+.072 \\
\frac{3}{6} m+x_{6} & =\mathrm{C}^{\prime}+.096 \\
\frac{3}{6} m+x_{7}-x_{4} & =\mathrm{C}^{\prime}+.039 \\
\frac{3}{6} m+x_{8}-x_{5} & =\mathrm{C}^{\prime}+.025 \\
\frac{3}{6} m-x_{6} & =\mathrm{C}^{\prime}+.022
\end{array}
$$

Resolving these equations, we find-

$$
\begin{aligned}
& x_{4}=+.069 \\
& x_{5}=+.018 \\
& x_{0}=+.037 \\
& x_{7}=+.049 \\
& x_{8}=-.016
\end{aligned}
$$

Again, by means of a column of 25°, the spaces [32-57], [37.62], [47.72], [57.82], [72.97], and $[42 \cdot 67],[52 \cdot 77],[62 \cdot 87],[67 \cdot 92],[72 \cdot 97]$ were compared. The results are shown in the following table:-

Space.	Equivalent.			
	Comp ${ }^{\text {u }}$ 1.	Comp" 2.	Comp" ${ }^{3}$	Comp" 4.
[32.57]	C_{1} - $\cdot 139$	$\mathrm{C}_{2}-139$	$\mathrm{C}_{3}-1{ }^{\text {d }} 33$	$\mathrm{C}_{4}-133$
[37.62]	$\mathrm{C}_{1}-\cdot \mathrm{I} 53$	$\mathrm{C}_{2}-160$	$\mathrm{C}_{3}-162$	$\mathrm{C}_{4}-1.167$
[47.72]	$\mathrm{C}_{1}-185$	$\mathrm{C}_{2}-197$	$\mathrm{C}_{3}-192$	$\mathrm{C}_{4}-\mathrm{-} \cdot 200$
$[57.82]$	$\mathrm{C}_{1}-.230$	$\mathrm{C}_{3}-.229$		$\mathrm{C}_{4}-.229$
[72.97]			$\mathrm{C}_{3}-.280$	$\mathrm{C}_{4}-289$
[42.67]	$\mathrm{C}^{\prime}-203$	$\mathrm{C}^{\prime}-2.204$		$\mathrm{C}^{\prime}-2.213$
[52.77]	$\mathrm{C}_{1}^{\prime}-2 \mathrm{I} 9$	$\mathrm{C}^{\prime}{ }^{\prime}-230$	$\mathrm{C}_{3}^{\prime}-.214$	$\mathrm{C}^{\prime}{ }_{4}^{4}-.233$
[62.87]	$\mathrm{C}_{1}^{\prime}-.205$	$\mathrm{C}^{\prime}{ }^{\prime}-215$	$\mathrm{C}^{\prime}{ }^{3}-.205$	$\mathrm{C}_{4}^{+}-2 \mathrm{I} 3$
[67.92]	$\mathrm{C}_{1}^{\prime}-\cdot 17^{8}$	$\mathrm{C}_{2}^{\prime}-200$	$\mathrm{C}^{\mathrm{C}^{3}}{ }^{3}-199$	$\mathrm{C}^{\prime}{ }^{4}-207$
[72.97]			$\mathrm{C}_{3}^{\prime}-.279$	$\mathrm{C}_{4}^{\prime}-294$

Now in the first of the two series contained in this table, C is to be found from $\frac{1}{2}[32 \cdot 57]+\frac{1}{2}[57.82]=\frac{1}{2}[32.82]$ and so eliminated in each comparison. In the second series C^{\prime} is eliminated by getting its value from $\frac{1}{2}[42 \cdot 67]+\frac{1}{2}[67 \cdot 92]=\frac{1}{2}[42 \cdot 92]$. Thus we obtain, taking the mean of the comparisons-

$$
\begin{aligned}
& {[32 \cdot 57]=\frac{1}{2}[32 \cdot 82]+.046} \\
& {[37 \cdot 62]=\frac{1}{2}[32 \cdot 82]+.022} \\
& {[47 \cdot 72]=\frac{1}{2}[32 \cdot 82]-.012} \\
& {[72 \cdot 97]=\frac{1}{8}[32 \cdot 82]-.105} \\
& {[42 \cdot 67]=\frac{1}{2}[42 \cdot 92]-.003} \\
& {[52 \cdot 77]=\frac{1}{2}[42 \cdot 92]-.024} \\
& {[62 \cdot 87]=\frac{1}{2}[42 \cdot 92]-.010} \\
& {[72 \cdot 97]=\frac{1}{2}[42 \cdot 92]-.084}
\end{aligned}
$$

But we have already seen that-

$$
\begin{aligned}
& {[32 \cdot 82]=\frac{5}{6}[32.92]-.016} \\
& {[42 \cdot 92]=\frac{5}{6}[32.92]-.069}
\end{aligned}
$$

and these values are to be substituted in the preceding equations: making the substitution we get two different values for [72.97], viz. $=\frac{3}{12}[32 \cdot 92]-113$ and $=\frac{5}{12}[32 \cdot 92]-118$ of which we shall take the mean. Further we have found-

$$
[32 \cdot 92]=\frac{1}{5}[32 \cdot 2[2]-.005
$$

And thus we are able to express the thirteen different spaces in terms of [32.212]. The results are as follow :-

Standard Thermometer, 4142

$$
\begin{aligned}
& {[32 \cdot 37]=\frac{1}{12}[32 \cdot 92]+.023=\frac{1}{36}[32 \cdot 212]+.023} \\
& {[32 \cdot 42]=\frac{2}{12}[32 \cdot 92]+.069=\frac{2}{36}[32 \cdot 212]+.068} \\
& {[32 \cdot 47]=\frac{3}{12}[32 \cdot 92]+.069=\frac{3}{36}[32 \cdot 212]+.068} \\
& {[32 \cdot 52]=\frac{4}{12}[32 \cdot 92]+.018=\frac{4}{36}[32 \cdot 212]+.016} \\
& {[32 \cdot 57]=\frac{5}{12}[32 \cdot 92]+.038=\frac{5}{36}[32 \cdot 212]+.036} \\
& {[32 \cdot 62]=\frac{6}{12}[32 \cdot 92]+.037=\frac{6}{36}[32 \cdot 212]+.035} \\
& -32 \cdot 67]=\frac{7}{12}[32 \cdot 92]+.032=\frac{7}{36}[32 \cdot 212]+.029 \\
& {[32 \cdot 72]=\frac{9}{12}[32 \cdot 92]+.049=\frac{9}{36}[32 \cdot 212]+.046} \\
& {[32 \cdot 77]=\frac{0}{12}[32 \cdot 92]-.040=\frac{9}{36}[32 \cdot 212]-.044} \\
& {[32 \cdot 82]=\frac{10}{12}[32 \cdot 92]-.016=\frac{10}{36}[32 \cdot 212]-.020} \\
& {[32 \cdot 87]=\frac{1}{12}[32 \cdot 92]-.007=\frac{11}{36}[32 \cdot 212]-.012} \\
& {[32 \cdot 92]=\frac{12}{12}[32 \cdot 92]+.000=\frac{12}{36}[32 \cdot 212]-.005} \\
& {[32 \cdot 97]=\frac{13}{12}[32 \cdot 92]-.068=\frac{19}{36}[32 \cdot 212]-.073}
\end{aligned}
$$

In the Ordnance Survey Standard Thermometer, No. 3241, the corresponding values obtained in precisely the same manner are-

Standard Thermometer, 3241.

$$
\begin{aligned}
& {[32 \cdot 37]=\frac{1}{12}[32 \cdot 92]+.008=\frac{1}{36}[32 \cdot 212]+.003} \\
& {[32.42]=\frac{2}{12}[32.92]-.02 \mathrm{I}=\frac{2}{36}[32.212]-.03 \mathrm{I}} \\
& {[32 \cdot 47]=\frac{3}{12}[32 \cdot 92]-.045=\frac{3}{36}[32 \cdot 212]-.060} \\
& {[32 \cdot 52]=\frac{4}{13}[32.92]-.020=\frac{4}{36}[32 \cdot 212]-.04 \mathrm{r}} \\
& {[32.57]=\frac{5}{12}[32.92]-.033=\frac{3^{3}}{64}[32.212]-.059} \\
& {[32.62]=\frac{6}{12}[32.92]-.037=\frac{6}{36}[32.212]-.068} \\
& {[32.67]=\frac{7}{T_{2}}[32.92]-.047=\frac{7}{36}[32.212]-.083} \\
& {[32 \cdot 72]=\frac{9}{12}[32 \cdot 92]-.065=\frac{8}{36}[32 \cdot 212]-.106} \\
& {[32 \cdot 77]=\frac{9}{12}[32.92]-.070=\frac{9}{36}[32.212]-.116} \\
& {[32.82]=\frac{10}{12}[32.92]-.043=\frac{10}{36}[32.212]-.095} \\
& {[32.87]=\frac{11}{11}[32 \cdot 92]+.018=\frac{11}{36}[32.212]-.039} \\
& {[32 \cdot 92]=\frac{1}{1} \frac{1}{2}[32 \cdot 92]+.000=\frac{12}{36}[32 \cdot 212]-.062} \\
& {[32.97]=\frac{1}{1} \frac{3}{2}[32.92]+.035=\frac{13}{3}[32.212]-.032}
\end{aligned}
$$

For these data, a curve of errors is formed for cach thermometer, the abscissa being the temperature t and the ordinate the error of the thermometer at the temperature t. Thirteen points are given, and a curve being drawn through them the errors of the thermometer at intermediate points is thus interpolated graphically.

In the Standard 3241 the correction for the error in the relative positions of the boiling and freezing point, or for the mean length of a degree, is $-0.0010(t-32)$.

These two Standard Thermometers were compared together on the 17 th April, connanencing at the temperature 52° and ending with 97°. Inmediately after the first comparisons the fire was lighted in a stove in the roon, and the temperature of the room was made to increase regularly and continually so as to be nearly as possible the same as that of the water in the trough. It was not, however, found practicable to raise the temperature of the room to more than 90°. The thermometers were compared at or about $52^{\circ}, 55^{\circ}, 57^{\circ}$, $60^{\circ}, 62^{\circ}, 65^{\circ} \ldots 95^{\circ}, 97^{\circ}$. In each position five comparisons were made, the thermometers lying close to one another and their tubes carcfully made horizontal.

The following table contains the result of these observations, each line being the mean of five comparisons, except the last which is the mean of four.

No.	3241	4142	No.	3241	4142
1	$97 \cdot 8$	97.76	11	$72 \cdot 56$	${ }^{\circ} \mathrm{\circ} \cdot 103$
2	9.5 .18	94.78	12	70.56	70.05
3	92.58	92011	13	67.70	$67 \cdot 17$
4	90.91	$90 \cdot 41$	14	65.57	$65^{\circ} \mathrm{O}$
5	$85 \cdot 61$	87.15	15	62.64	62.15
6	85.74	85.27	16	$60 \cdot 65$	60.15
7	$8{ }^{\circ} \cdot 72$	82-25	17	57.95	57.48
8	80.71	$80 \cdot 23$	18	56.00	55.53
9	77.92	$77^{\circ} 43$	19	$52 \cdot 63$	$52 \cdot 20$
10	$75 \cdot 57$	$75^{\circ} 06$			

Immediately after these comparisons the thermometers were placed in ice, and four different determinations of the freezing point made-with the following result :-

No.	3241	4142
1	32.42	32.00
2	32.41	32.00
3	32.41	32.00
4	32.41	32.00

The total corrections then to the thermometer readings in the above table will be as subjoined-

No.	3241	4142	No.	3241	4142
1	-.50	.- .13	11	-.56	-.00
2	-.52	-.09	12	-.55	-.01
3	-.53	-.06	13	-.52	-.01
4	-.52	-.06	14	-.52	-.01
5	-.50	-.06	15	-.51	-.01
6	-.51	-.07	16	-.50	+.01
7	-.55	-.07	17	-.49	+.01
8	-.57	-.08	18	-.48	+.00
9	-.57	-.08	19	-.47	+.00
10	-.56	-.06			

Applying these corrections to the actual thermometer readings we get the following-

No.	3241	4142	No.	3241	4142
1	9.	0.34	97.33	11	72.00
2	$9+.66$	94.69	12	70.01	72.03
3	92.05	92.05	13	67.18	67.16
4	90.39	90.35	14	65.05	65.08
5	87.11	87.09	15	62.13	62.14
6	85.23	85.20	16	60.15	60.16
7	82.17	82.18	17	57.46	57.49
8	80.14	80.15	18	55.52	55.53
9	77.35	77.35	19	52.16	52.20
10	75.01	75.00			

Taking now the true temperature to be the mean of those indicated by the two thermometers we have the following residual errors:-

194

Temperature.	$\mathbf{3 2 4 1}$	$\mathbf{4 1 4 2}$	Temperature.	$\mathbf{3 2 4 1}$	$\mathbf{4 1 4 2}$
0		00	-0.005	-0.005	0
97	+0.015	+0.015	70	-0.015	+0.015
95	-0.000	-0.000	67	+0.015	+0.015
92	+0.020	-0.020	65	-0.015	+0.010
90	+0.010	-0.010	62	-0.005	+0.015
87	+0.015	-0.015	60	-0.005	+0.005
85	-0.005	+0.005	57	-0.015	+0.005
82	-0.005	+0.005	56	-0.005	+0.005
80	0.000	0.000	52	-0.020	+0.020
77		-0.005	-0.005		
75					

The working thermometers $4219,4226,4222,4220$, were compared with 4142 on the 24 th, 25 th, and 27 th of March. The following table contains the results; the number of comparisons of which each line is the mean, being shown in the last column :-

$\underset{\substack{\text { No. of } \\ \text { Set. }}}{ }$	4219	4226	4142	4222	4220	No. of Conlparisons
1	98.02	98.00	97.98	97.92	98.07	6
2	94.88	94.90	94.72	94.86	94.91	6
3	93.08	93.09	92.90	93.03	93.08	1 I
4	91.66	91.67	$91 \cdot 44$	91.59	91.68	11
5	90.15	$90 \cdot 16$	89.89	$90 \cdot 02$	$90 \cdot 16$	10
6	88.57	88.60	88.34	88.45	88.61	8
7	87.70	87.76	$87 \cdot 47$	87.57	87.75	4
8	$85 \cdot 48$	85.48	85.25	$85 \cdot 36$	$85 \cdot 47$	5
9	83.43	83.44	83.20	83.28	83.37	2
10	80.95	80.96	80.80	80.79	80.94	3
11	78.89	78.84	78.76	78.76	78.84	3
12	76.81	$76 \cdot 79$	$76 \cdot 71$	$76 \cdot 75$	76.80	3
13	74.67	74.63	$74 \cdot 47$	74.60	$74 \cdot 70$	3
14	72.44	72.41	72.22	72.43	72.46	3
15	$70 \cdot 65$	$70 \cdot 60$	$70 \cdot 48$	70.65	70.66	3
16	68.82	68.77	68.64	68.83	68.87	3
17	67.25	$67 \cdot 21$	67.11	67.26	67.27	3
18	65.40	$65 \cdot 35$	65.25	65.41	65.43	3
19	64.50	64.43	64.35	$64 \cdot 50$	64.52	3
20	62.19	$62 \cdot 19$	62.09	62.18	62.24	3
2 I	61.25	61.20	61.11	61.22	61.29	3
22	59.80	59.71	59.66	59.76	59.84	3
23	57.65	57.53	57.50	57.59	57.68	3
24	55.82	55.74	55.68	55.75	55.82	3
25	$54 \cdot 58$	54.50	$54 \cdot 42$	54.50	$54 \cdot 5^{8}$	2
25	51.97	51.88	5 I .80	51.89	51.91	3
27	$48 \cdot 42$	$48 \cdot 30$	$48 \cdot 17$	$48 \cdot 31$	$48 \cdot 30$	3
28	$46 \cdot 55$	$46 \cdot 46$	46.27	$4^{6 \cdot 45}$	$46 \cdot 51$	3
29	$44 \cdot 42$	$44 \cdot 34$	44.15	$44 \cdot 25$	$44 \cdot 4 \mathrm{I}$	3
30	$43 \cdot 39$	$43 \cdot 32$	$43 \cdot 13$	$43 \cdot 27$	$43 \cdot 40$	3
$3{ }^{1}$	$42 \cdot 44$	$42 \cdot 38$	$42 \cdot 2$ I	$42 \cdot 33$	$42 \cdot 46$	3
32	41.72	41.69	41.52	41.63	41.79	3

On the conclusion of these comparisons the thermometers were all placed in ice, and the means of six determinations of the freezing point of each thermometer were as follow:-

4219	4226	4142	4222	4220
$32 \cdot 11$	$32^{\circ} \cdot 10$	32.00	$3{ }^{1.9} 8$	32:11

If now we correct the readings in the preceding table for the errors of the freezing points, and, in the case of the Standard 4142, apply also the corrections for calibration and boiling point errors, we get the numbers shown below :-

No. of Set.	4219	4226	4142	4222	4220
1	$\stackrel{\circ}{\circ}$. 90	${ }^{\circ} .84$	4	6
2	97.77	97.80	94.63	97.84 94.88	94.80
3	92.97	92.99	92.83	93.05	42.97
4	9 C .55	91.57	$9 \mathrm{I} \cdot 3^{8}$	91.61	91.57
5	90.04	90.06	89.83	90.04	90.05
6	88.46	88.50	88.27	88.47	88.50
7	87.59	87.66	87.40	87.59	87.64
8	85.37	$85 \cdot 38$	$85 \cdot 17$	$85 \cdot 38$	$85 \cdot 36$
9	$83 \cdot 32$	$83 \cdot 34$	$83 \cdot 12$	83.30	83.26
10	80.84	80.86	80.73	80.81	80.83
11	$78 \cdot 78$	$78 \cdot 74$	78.67	$78 \cdot 78$	78.73
12	$76 \cdot 70$	$76 \cdot 69$	$76 \cdot 62$	$70 \cdot 77$	76.69
13	74.56	74*53	74.44	$74 \cdot 62$	$74 \cdot 59$
14	$72 \cdot 33$	$72 \cdot 31$	72.23	$72 \cdot 45$	$72 \cdot 35$
15	$70 \cdot 54$	$70 \cdot 50$	$70 \cdot 49$	70.67	$70 \cdot 55$
16	68.71	68.67	68.63	68.85	$68 \cdot 76$
17	$67 \cdot 14$	$67 \cdot 11$	$67 \cdot 10$	$67 \cdot 28$	67.16
18	$65 \cdot 29$	$65 \cdot 25$	$65 \cdot 24$	$65 \cdot 43$	$65 \cdot 32$
19	$64 \cdot 39$	$64 \cdot 33$	$6+34$	$64 \cdot 52$	$64 \cdot 41$
20	62.08	62.09	62.09	62.20	62.13
21	$6 \mathrm{I} \cdot 14$	$6 \mathrm{I} \cdot 10$	$6 \mathrm{I} \cdot 12$	61.24	61.18
22	59.69	59.61	$59 \cdot 67$	59.78	$59 \cdot 73$
23	$57 \cdot 54$	$57 \cdot 43$	$57 \cdot 51$	57.61	57.57
24	55.71	$55 \cdot 64$	55.68	$55 \cdot 77$	55.71
25	$54 \cdot 47$	$54 \cdot 40$	$54 \cdot 42$	54.52	$54 \cdot 47$
26	$5 \mathrm{I} \cdot 86$	$5 \mathrm{I} \cdot 78$	$5 \mathrm{I} \cdot 80$	$5 \mathrm{I} \cdot 9 \mathrm{I}$	$5 \mathrm{I} \cdot 80$
27	$48 \cdot 31$	$48 \cdot 20$	$48 \cdot 21$	$48 \cdot 33$	$48 \cdot 19$
28	$46 \cdot 44$	$46 \cdot 36$	$46 \cdot 32$	$46 \cdot 47$	$46 \cdot 40$
29	$44 \cdot 31$	$44 \cdot 24$	$44 \cdot 22$	$44 \cdot 27$	44.30
30	$43 \cdot 28$	$43 \cdot 22$	$43 \cdot 19$	$43 \cdot 29$	$43 \cdot 29$
31	$42 \cdot 33$	$42 \cdot 28$	- $42 \cdot 27$	$42 \cdot 35$	$42 \cdot 35$
32	41.61	4I•59	4I 57	41.65	41.68

Referring now the other thermometers to the Standard 4142, we get the following final system of errors, which must be regarded as calibration errors :-

Tenp.	Bronze Bul.			Steel Bul.			
	Efrors of		Error of Mean.	Errors of		Frror of Mean.	${ }^{\text {'Temp. }}$
	4219	4226		4222	4220		
988	+0.07	+0.06	+0.07	+0.10	+0.12	+0.11	98
95	+0.14	$+0.17$	+0.16	$+0.25$	+0.17	+0.21	95
93	+0.14	+0.16	+0.15	+0.22	+0.14	+0.18	93
92	+0.17	+0.19	+0.18	+0.33	+0.19	+0.21	92
90	+0.21	+0.23	+0.22	+0.21	+0.22	+0.22	90
89	+0.19	+0.23	$+0.21$	+0.20	$+0.23$	+0.22	89
88	+0.19	+0.26	+0.23	+0.19	$+0.24$	+0.22	88
85	+0.20	+0.21	+0.21	$+0.21$	+0.19	+0.20	85
83	$+0.20$	+0.22	+0.21	+0.18	+0.14	+0.16	83
81	+0.11	+0.13	+0.12	+0.08	+0.10	+0.09	8 I
79	+0.11	$+0.07$	+0.09	$+0.11$	$+0.06$	+0.09	79
77	$+0.08$	+0.07	+0.08	$+0.15$	$+0.07$	+0.11	77
75	$+0.12$	+o.09	+0.11	+0.18	+0.15	+0.17	75
72	+0.10	$+0.08$	+0.09	$+0.22$	+0.12	+0.17	72
71	+0.05	+0.01	+c.03	+0.18	$+0.06$	+0.12	71
69	+0.08	+0.04	+0.06	$+0.22$	+0.13	+0.18	69
67	$+0.04$	+0.01	$+0.03$	+0.18	+0.06	+0.12	67
65	+0.05	+o.01	+0.03	+0.19	+0.08	$+0.14$	65
64	$+0.05$	-0.01	+0.02	+0.18	+0.07	+0.13	64
62	-0.01	$0 \cdot 00$	-0.01	+0.11	$+0.04$	+0.08	62
61	+0.02	-0.02	0.00	+0.12	+0.06	+0.09	61
60	+0.02	-0.06	-0.02	+O.1I	+0.06	+0.09	60
58	+0.03	-0.08	-0.03	+0.10	+0.06	+0.08	58
56	+0.03	-0.04	-0.01	+0.09	$+0.03$	$+0.06$	56
55	+0.05	-0.02	$+0.02$	+0.10	$+0.05$	+0.08	55
52	+0.06	-0.02	$+0.02$	+0.11	$0^{\circ} 00$	+0.06	52
48	+0.10	-0.01	+0.05	+0.12	-0.02	+0.05	48
47	+0.12	$+\mathrm{O}^{\circ} \mathrm{O} 4$	+0.08	$+0.15$	+0.08	$+0.12$	47
41	+ 0.09	$+0.02$	$+0.06$	$+0.05$	+0.08	$+0.07$	44
43	+0.09	+0.03	$+0.06$	+0.10	+0.10	+0.10	43
42	+0.06	+0.01	+0.04	+0.08	+0.08	+0.08	42
41	+0.04	+0.02	$+0.03$	+0.08	+o'II	+0.10	41

To find the actual errors of these thermometers at any given time, it is necessary to $a d d$ to the quantities in this Table the error of the freezing point in each thermometer, which is positive when the thermometer placed in melting ice reads higher than $32^{\circ} \cdot 00$.

On April 27, just before the commencement of the second series of expansion experiments, the freezing points of the thermometers were found as follow:-

4219	4226	4222	4220
\circ $32 \cdot 14$	\circ $32 \cdot 10$	32.08	$32 \cdot 122$

3.

The actual expansion of a 10 -feet bar of bronze for 60° Fahrenheit is about the sixteenth part of an inch, and this is a large quantity for micrometer measurement; it is, however, divided between two micrometers, so that either of them only measures half this amount. The actual number of divisious measured in several of the comparisons is upwards of 1000 divisions by cach microscope, and in one case the quantity exceeds ifoo divisions; so that it revolutions of the screw are brought into play. In all our preceding operations no quantities of this magnitude have been measured, and it becomes necessary to have some assurance that the screws of the micrometers have no irregularities which would vitiate our results.

In order to put this to the test, three contiguous or successive spaces of one hundredth of an inch on the foot OF were selected; viz., the three right-band spaces in the tenth [6.7]. Referring to page 58 it will be seen that those three spaces are not quite equal, but taking the meau of the results given by the two microscopes, if $3 S$ be the sum of the three spaces

$$
\begin{align*}
& \text { Left space }=S+0.75 \tag{1}\\
& \text { Centre space }=S-\mathrm{I} .5^{8} \\
& \text { Right space }=S+0.83
\end{align*}
$$

The three spaces were then mensured in different parts of the field. The observations were all made by one observer, and for each microscope the focal adjustment remained constant during the operation. First, the scale was adjusted (being mounted as in fig 5, Plate VI.) so that (in the microscope H) the apparent right-hand line of the four which contain the three spaces, read approximately, $300 \cdot 0$. The scale remaining untouched, two readings of this line are made, the micrometer screw revolved until the next line is reached, which is bisected twice. The movement of the screw being continued, the third, and then the fourth lines, are each twice bisected. After the two bisections of the fourth, or apparent left-hand line, the operation is reversed; the fourth line is again bisected twice, then the third line the same, the second, and fivally the first. As the scale $\mathbf{O F}$ remains untouched during this time, the second readings should differ from the first only by errors of observation. The readings of the four lines are $300,650,1000$, and 1350 , very closely.

The scale is then moved by the motion of the carriages gg until the right-hand line reads 350 ; and with this setting, the operation above recorded is repeated. The reading of the left-hand line is in this position 1400.

The same operation is repeated, commencing with $400,450,500,550,600,650$; the reading of the left-hand linc in the last case being 1700 . The centre of the field reads 1000 .

Thus the three spaces are measured in eight different positions in the field, differing half a revolution each.

The whole of this is repeated five times over for each micrometer.
Taking first the microscope H, the mean results are as follow :

$$
\begin{align*}
& \text { 1403.18..... 1051.50..... 701.54..... 349•70 } \tag{2}\\
& \text { 1454.24 IIO2.48 } 752 \cdot 40 \text {. . . . } 400 \cdot 42 \\
& \text { 1503.84..... II51.96..... 802.22..... 450.10 }
\end{align*}
$$

$$
\begin{aligned}
& \text { 1604.08 } 1252 \cdot 42 \text {..... } 902 \cdot 78 \text {..... } 550 \cdot 96 \\
& \text { 1652.44..... } 1301 \cdot 00 \text {. . . . } 95 \text { I • } 36 \text {.. . . . 599• } 48 \\
& \text { 1702.88..... 1351•38..... 100I•98 650•12 }
\end{aligned}
$$

In order that the differences here may represent the same quantity we must correct for the inequality of the three spaces; that is, the second column (vertical) must have the quantity +0.83 applied, and the third column the quantity -0.75 . Supposing this done, let the irregularities of the screw be such as to require the corrections

$+x_{30}$ to the reading	300	
$+x_{35}$	\prime	$\prime \prime$
\vdots		
\vdots		\vdots
$+x_{170}$	\prime	,
		1700

And let $350+h$ be the real value of the interval being measured, or the mean value of the three spaces.

Take now the differences of the first readings corrected, and we get

$$
\begin{align*}
& 1052 \cdot 52+x_{135}-x_{30}=1050+3 h \\
& 702 \cdot 63+x_{100}-x_{30}=700+2 h \\
& 350.81+x_{65}-x_{30}=350+h \\
& \text { or } \quad x_{195}-x_{30}-3 h+2.52=0 \tag{4}\\
& x_{100}-x_{30}-2 h+2.63=0 \\
& x_{65}-x_{30}-h+0.8 \mathrm{I}=0
\end{align*}
$$

So each of the other lines will give three equations, making 24 in all, from which we have to get $29 x$'s and h. So that the problem is indeterminate in this shape.

Each of the numbers in (2) is the mean of ro readings; it is therefore liable to the probable error of $\frac{0 \cdot 32}{\sqrt{10}}= \pm 0^{d} \cdot 10$ from the inevitable errors of observation. It is not then quite correct to throw all these errors upon the screw. Indeed, to determine with anything like precision the errors of the screw, a vastly greater number of observations would be required; but our object is rather to show that the errors, whatever they be are very small.

We shall proceed in the following manner : writing out all the discrepancies of the observations, as we have done for the first line, but without turning them into equations as (4), we shall determine that system of corrections $x_{30} \ldots \ldots x_{170}$ which shall make the sum of the squares of the discrepancies, together with the sum of the squares of the corrections themselves, a minimum. That is

$$
\begin{align*}
& \left(-x_{30}+x_{65}-h+0.8 \mathrm{I}\right)^{2} \tag{5}\\
& +\left(-x_{30}+x_{100}-2 h+2.63\right)^{8} \\
& +\left(-x_{30}+x_{135}-3 h+2.52\right)^{2} \\
& +\left(-x_{00}+x_{100}-h+\mathbf{I} \cdot 1 I\right)^{2} \\
& +\left(-x_{i 5}+x_{135}-2 h+2.00\right)^{2} \\
& +\left(-x_{05}+x_{170}-3^{h}+2 \cdot 76\right)^{2} \\
& +\left(-x_{30}+x_{70}-h+\mathbf{1 . 0 9}\right)^{2} \\
& +\left(-x_{\mathrm{sj}}+x_{\mathrm{Ju5}}-2 h+2.63\right)^{2} \\
& +\left(-x_{35}+x_{140}-3^{h}+3 \cdot 4^{8}\right)^{2} \\
& +\left(-x_{40}+x_{75}-h+1.23\right)^{2} \\
& +\left(-x_{40}+x_{110}-2 h+2.89\right)^{2} \\
& +\left(-x_{40}+x_{148}-3 h+3.83\right)^{2} \\
& +\left(-x_{45}+x_{80}-h+\mathrm{I} \cdot 37\right)^{2}
\end{align*}
$$

$$
\begin{aligned}
& +\left(-2_{s}+x_{16}-2 / 4+2.69\right)^{s} \\
& +\left(-x_{50}+x_{100}-3 h+3.74\right)^{2} \\
& +\left(-x_{\mathrm{sb}}+x_{\mathrm{sb}}-h+0.71\right)^{2} \\
& +\left(-x_{50}+x_{120}-2 h+1.91\right)^{2} \\
& +\left(-x_{\mathrm{sw}}+x_{105}-3^{h}+2.74\right)^{2} \\
& +\left(-x_{s s}+x_{20}-h+1.07\right)^{8} \\
& +\left(-x_{55}+x_{12 s}-2 h+2.29\right)^{2} \\
& +\left(-x_{\mathrm{ts}}+x_{100}-3^{h}+3 \cdot 12\right)^{2} \\
& +\left(-x_{80}+x_{20}-h+1 \cdot 13\right)^{2} \\
& +\left(-x_{60}+x_{100}-2 h+2 \cdot 35\right)^{3} \\
& +\left(-x_{00}+x_{169}-3 h+2 \cdot 96\right)^{2} \\
& +\left(x_{30}^{2}+x_{i s}^{2}+\ldots . x_{105}^{2}+r_{120}^{2}\right)
\end{aligned}
$$

must be a minimum by the variation of $x_{30} x_{\mathrm{ss}} \ldots x_{\mathrm{yj0}}$ and h. The solution is simple as the quantities x are not much intermixed; only $x_{\Delta 5} x_{100} x_{13 s}$ occur twice in the discrepancies, we have therefore placed together the discrepancies obtained from the first and last lines of (2); they form the first six of the quantities just written down.

Differentiating first with respect to $x_{30} x_{45} x_{100} x_{135} x_{170}$ we get

$$
\begin{aligned}
& 4 x_{89}-x_{05}-x_{100}-x_{185} \quad-5.96+6 h=0 \\
& -x_{30}+5 x_{55}-x_{100}-x_{135}-x_{170}-5 \cdot 15+5 h=0 \\
& -x_{30}-x_{05}+3 x_{100}+3.74-3 h=0 \\
& -x_{30}-x_{05}+3 x_{185}+2 x_{170}+2.76-5 h=0
\end{aligned}
$$

whence the quautities x are easily expressed in terms of h.
Again, differentiating with respect to $x_{35} x_{70} x_{105}, x_{14}$

$$
\begin{aligned}
& 4 x_{35}-x_{70}-x_{105}-x_{105}-7 \cdot 20+6 h=0 \\
&-x_{35}+2 x_{70}+09-h=0 \\
&-x_{35}+2 \cdot 63-2 h=0 \\
&-x_{30}
\end{aligned}
$$

Here again the quantities x are easily expressed in terms of h; and so on. Finally we have to differentiate with respect to h, which gives one equation containing all the x 's.

When the necessary substitutions are made, the equation becomes

$$
\begin{gathered}
-29.432+27.15 h=0 \\
\therefore h=1.084
\end{gathered}
$$

and now all the corrections x are numerically known. Their values are as follow :-

$x_{30}=-.15$	$x_{80}=-.01$
$x_{35}=+.14$	$x_{85}=+.07$
$x_{40}=+.29$	$x_{90}=+.00$
$x_{45}=+.26$	$x_{05}=-.03$
$x_{00}=-.23$	$x_{100}=-.23$
$x_{05}=-.00$	$x_{105}=-.16$
$x_{00}=-.01$	$x_{110}=-.22$
$x_{05}=-.04$	$x_{110}=-.13$
$x_{70}=+.07$	$x_{120}=+.02$
$x_{75}=+.07$	$x_{125}=-.06$

$$
\begin{align*}
& x_{130}=-.10 \tag{6}\\
& x_{135}=+.20 \\
& x_{140}=-.05 \\
& x_{1+5}=-.14 \\
& x_{150}=-.12 \\
& x_{155}=+.14 \\
& x_{160}=+.06 \\
& x_{165}=+.14 \\
& x_{170}=+.22
\end{align*}
$$

Of these quantities I 4 are greater than $\mathrm{o}^{\mathrm{d}} \cdot \mathbf{1 2}$, and 15 less than $\mathrm{O}^{\mathrm{d}} \cdot \mathbf{1 2}$.

When these corrections are applied to the micrometer readings they leave the following discrepancies, corresponding to the lines in (2)

-.38	+.39	-.16
+.04	+.16	-.06
+.14	+.21	-.07
+.11	+.13	+.02
-.15	-.01	-.07
-.07	+.06	-.01
-.14	+.09	+.03
-.23	+.16	-.16

$$
\begin{align*}
& -.16 \tag{7}\\
& -.06 \\
& -.07 \\
& +.02 \\
& -.07 \\
& -.01 \\
& +.03
\end{align*}
$$

Of these, twelve are greater, and twelve less than $\mathrm{o}^{\mathrm{d}} \cdot \mathbf{1 2}$. Now the probable error of any one of the numbers in (2) being $\pm \mathrm{o}^{\mathrm{d}} \cdot \mathrm{IO}$, the probable error of the difference of two of these numbers is $\pm 0^{d}$. 14 ; so that the residual discrepancies after making use of the corrections x to the micrometer readings are somewhat less than might have been expected.

It appears, then, that in the microscope H there is nothing to be feared from irregularity of the screw within the limits up to which it has been used, or within seven revolutions on either side of the centre of the field.

The same method of observation gave for the microscope K the following numbers-

$$
\begin{align*}
& 300 \cdot 48 \cdots \cdot 65^{\text {d }} \cdot 02 \cdots \cdot 1000^{d} \cdot 12 \cdots 1350 \cdot 4^{8} \tag{8}\\
& \text { 350.18.... 701•70…1049•40… 1399•74 } \\
& \text { 400.26.... } 751 \cdot 70 \cdots \text {....1099.58…1450.00 } \\
& \text { 450.66.... 80I.84…1149.78…1499.68 } \\
& \text { 499.12.... 849.68.... 1197.78.... 1547.82 } \\
& 549 \cdot 46 \cdots 900 \cdot 58 \cdots 1248 \cdot 32 \cdots 1598 \cdot 24 \\
& \text { 600.12.... 951•34…1299•10.... 1649•40 }
\end{align*}
$$

In order to correct for inequality of the spaces, the numbers in the second vertical column must have - $0^{d} .83$ applied, and the numbers in the third column $+0^{\prime \prime} \cdot 75$.

Proceeding now as in the case of microscope H , we get for h the equation

$$
\begin{aligned}
& 7 \cdot 344+27.15 h=0 \\
& \therefore h=-0.270
\end{aligned}
$$

and the values of the quantities x are found as follow:-

$$
\begin{array}{lll}
x_{30}=+.56 & x_{80}=-.22 & x_{180}=-.03 \tag{9}\\
x_{55}=+.37 & x_{60}=-.05 & x_{130}=-.1 \mathrm{I} \\
x_{50}=+.4 \mathrm{I} & x_{90}=-.25 & x_{140}=-.00 \\
x_{45}=+.17 & x_{y 5}=-.23 & x_{145}=-.07 \\
x_{50}=-.11 & x_{100}=-.3 \mathrm{I} & x_{150}=+.17 \\
x_{55}=+.06 & x_{105}=-.07 & x_{155}=+.19 \\
x_{60}=+.20 & x_{110}=-.10 & x_{200}=+.23 \\
x_{60}=-.16 & x_{115}=-.12 & x_{165}=+.06 \\
x_{70}=-.30 & x_{120}=-.03 & x_{170}=+.02 \\
x_{75}=-.24 & x_{125}=-.04 &
\end{array}
$$

Of these corrections, fourteen are less than $0^{\mathrm{d}} \cdot 14$ and fifteen exceed that quantity.

If now we correct the micrometer readings by these quantities and then take out the differences, the following discrepancies remain. They are arranged to correspond with the lines in (8).

$$
\begin{array}{lll}
+.26 & +.06 & +.14 \\
+.29 & +.07 & +.00 \\
+.23 & +.10 & +.07 \\
+.23 & +.12 & -.17 \\
+.06 & +.03 & -.19 \\
+.25 & +.05 & -.24 \\
+.23 & +.04 & -.05 \\
+.25 & -.04 & -.01
\end{array}
$$

Twelve of these errors exceed $0^{d} \cdot 11$ and twelve are less than that quantity. There is, however, a preponderance of + quantities in the first column. This may be due to the circumstance that the equations (I) are not frec from probable error. In fact, there is a discordance between the results given by H and K , page 5^{8}, as to the relative magnitude of the three spaces.

We have now tolerably satisfactory evidence that there is nothing to fear from the irregularities of the micrometer screws.

The value of a revolution of either of the screws which has been used up to this time, was determined from measurement of a space of one hundredth of an inch or 350 divisions, and since no quantities measured hitherto have been so great as this, the determination has sufficed. It becomes necessary now, however, to obtain the value of a revolution from the measurement of a much larger space. Accordingly a space of four hundredths of an inch was chosen, being the four hundredths adjoining the line 6 on the foot OF. Now the value of this space is (see page 59) -

$$
\begin{align*}
& s=\frac{4}{10}[6 \cdot 7]-2^{d} \cdot 00 \pm 0^{d} \cdot 104 \\
& \text { also } \quad[6 \cdot 7]=1_{10} \mathrm{I}-1^{d} \cdot 78 \pm 0^{d} \cdot 092 \\
& \cdot \cdot \frac{4}{10}[6 \cdot 7]=\frac{4}{100} \mathrm{I}-o^{d} \cdot 71 \pm 0^{d} \cdot 037 \\
& \cdot \cdot s=\frac{4}{100} \mathrm{I}-2^{d} \cdot 71 \pm 0^{d} \cdot 110 \tag{II}
\end{align*}
$$

The space was measured ten times by each of three observers :-Captain Clarke, R.E., Quartermaster Steel, and Corporal Compton. The scale was freshly adjusted to fucus each time so as fully to bring out all error arising from imperfect focusing. In each measure each line was bisected twice, and the mean of the two readings taken. The following table shows the individual measures-

Mieroseope \mathbf{H}.			Mieroscope K.		
d	d	d	d	d	d
1393.2	1393.1	1393.5	1387.8	${ }^{1} 387.8$	${ }^{1} 388.4$
1393.9	1393.0	1393.0	1388.3	1388.8	$13^{88} \cdot 7$
$1393 \cdot 3$	1393.8	1394.4	1387.6	工 387.6] 389.1
1393.2	1393.3	1393.6	1388.8	1387.9	$13^{8} 7 \cdot 2$
1393.8	1394.3	1393.7	+388.4	1389.7	1388.5
1393.0	1392.3	1392.8	1388.9	1389.6	$13^{89} \cdot+$
$1393 \cdot 3$	1394.3	1394.2	1388.3	1387.3	1388.9
$1394 \cdot 0$	$1395 \cdot$	1394.4	1388.6	$13^{87} 3$	$1388 \cdot 5$
1395.4	1393.4	1393.8	1388.3	1391.4	1388.8
$139+$ -	1395.4	1394.1	${ }_{1} 3^{88 \cdot 4}$	J $3^{88 \cdot 2}$	$13^{88} \cdot 1$

For microscope H the mean results by the different observers are 1393.71 , 1393.79, and I $393 \cdot 75$, while the general mean is $1393 \cdot 75$. For microscope K the individual means are $1388 \cdot 34,1388 \cdot 56$, and $1388 \cdot 56$, and the general mean $1388 \cdot 49$. Taking the general mean in each case as the truth, we get the following errors :-

Microscope H .			Microseope K.		
$-{ }^{d} 0.55$	- ${ }^{\text {a }}$ - 0.65	- ${ }^{\text {d }} 0.25$	$-\stackrel{\mathrm{d}}{0} .69$	$-\stackrel{4}{0.69}$	$\stackrel{\mathrm{d}}{0.09}$
+0.15	-0.75	-0.75	-0.19	+0.31	$+0.41$
-0.45	$+0.05$	$+0.65$	-0.89	-0.89	$+0.61$
-0.55	-0.45	-0.15	+0.3I	-0.59	- I.29
$+0.05$	$+0.55$	-0.05	-0.09	$+\mathrm{I} \cdot 2 \mathrm{I}$	$+0.01$
-0.75	- 1.45	-0.95	+0.41	+ I.II	+0.91
-0.45	+ 0.55	$+0.45$	-0.19	- I.I9	$+0.41$
$+0.25$	+1.25	+0.65	$+0.11$	-1.19	$+0.01$
$+1.65$	-0.35	$+0.05$	-0.19	+ 2.91	$+0.31$
$+0.25$	$+1.65$	+ 0.35	-0.09	-0.29	-0.39

If $\pm \mathrm{o}^{1} \cdot 32$ be taken as the probable error of a single reading, then the probable error of a single measurement, as described above, so far as is due to bisections only will also be $\pm o^{d} \cdot 32$. The errors of the first and third observers (shown in the first and third columns under each microscope) do not indicate any increase of magnitude due to focusing, but the errors of the second observer do. We shall assume that this disposition of the errors is owing to chance. The sum of the squares of the thirty errors for H is 15.475 , whence the probable error of one measurement is-

$$
\begin{equation*}
\pm \cdot 674 \sqrt{\frac{15 \cdot 475}{30-1}}= \pm \cdot 492 \tag{12}
\end{equation*}
$$

and the probable error of the general mean

$$
\pm \frac{492}{\sqrt{30}}= \pm 0^{1} .090
$$

For K the sum of the squares of the errors is 20.795 whence the probable error of one measure is

$$
\begin{equation*}
\pm .674 \sqrt{\frac{20 \cdot 795}{30-1}}= \pm .571 \tag{13}
\end{equation*}
$$

and the probable error of the general mean

$$
\pm \frac{571}{\sqrt{30}}= \pm 0^{d} \cdot 104
$$

so that the number of divisions of the two micrometers corresponding to the space in question, are-

$$
\begin{aligned}
& \text { H } \\
& \text { K } 1393^{d} \cdot 75 \pm 0^{d} \cdot 090 \\
& \text {. . . } \\
& \text { I } 388^{d} \cdot 49 \pm 0^{d} \cdot 104
\end{aligned}
$$

$$
\begin{aligned}
& \therefore(1396.46 \pm 0.14) h= \\
&(1391.20 \pm 0.15) k=\frac{1}{100} \mathrm{I} . \\
&(100 \\
& \hline
\end{aligned}
$$

and expressing I in millionths of a yard

$$
\begin{align*}
& h=\frac{1111 \cdot 11}{1396 \cdot 46 \pm \cdot 14}=0.79566 \pm \cdot 00008 \tag{14}\\
& k=\frac{1111 \cdot 11}{1391 \cdot 20 \pm \cdot 15}=0.79867 \pm \cdot 00000 \tag{15}
\end{align*}
$$

These results differ from those obtained at page 64 by oue division in 1100 and one division in 1200 respectively.

They differ also as to the amount of error of measure apparently due to focal error of adjustment. Here we have the probable error due to focal adjustment on a measure of 1390 divisions equal to

$$
\begin{aligned}
& \text { for } \mathrm{H} \ldots \ldots \pm \sqrt{(\cdot 49)^{3}-(\cdot 32)^{2}}= \pm \cdot 974 \\
& \text { for } \mathrm{K} \ldots \ldots \pm \sqrt{(.571)^{2}-(.32)^{2}}= \pm \cdot 74
\end{aligned}
$$

which gives for a measure of one thousand divisions a probable error

$$
\begin{aligned}
& \varepsilon_{\mathrm{II}}= \pm 0 \% 60 \\
& \varepsilon_{\mathrm{R}}= \pm 0 \cdot 3 \cdot \mathrm{H} 0
\end{aligned}
$$

These quantities are sinaller than those obtained at page 63 .

4.

We shall now give the results of the different comparisons in the following table. The first two columns contain the day and hour : the third and fourth, the observed micrometer readings and ter perature of the bronze bar : the fifth column the corrections for errors of thermometers. The sixth, seventh, and eighth give the micrometer and thermometer readings, and the corrections to the latter, for the steel bar. The lines are arranged in pairs : the first line of each pair contains the mean readings of one observer, Captain Clarke, R.E.; the second, the mean of simultaneous readings of the second observer, Quartermaster Steel, R.E. From the general description which has been given of the mode of observing, it will be understood that each number in the third and sixth columns is the mean of four micrometer readings, and each number in the fourth and seventh columns the mean of eight readings, viz., four readings of the left thermometer and four readings of the right thermometer.

Date.		Bronze Par.			Steel Bar.			No. of Comparison.
Day.	Hour.	Mierometer Measuren	Obsd Temp.	Corr" to Therm'.	Micrometer Measurements,	$\begin{aligned} & \text { Obs" } \\ & \text { Temp. } \end{aligned}$	$\begin{gathered} \text { Corn to } \\ \text { Therat } \end{gathered}$	
Fel. 20	5 op	$9.58 h+1407.90 k$		-0.13	$579.05 h+623 \cdot 50 h$		-0.26	. 5
	$3 \text { 15p.10. }$	$\left\{\begin{array}{l} 1407 \cdot 3^{8} h+1386 \cdot 13 k \\ 1409 \cdot 10 h+13^{86} \cdot 43 h \end{array}\right.$		-0.13	$\begin{aligned} & 684 \cdot 25 h+690 \cdot 68 k \\ & 686.60 h+690 \cdot 20 k \end{aligned}$		7	6
" "	4	$\begin{aligned} & 1406 \cdot 33 h+1386 \cdot 18 h \\ & 1+08 \cdot 10 h+1385 \cdot 75 h \end{aligned}$		-0.13	$\begin{aligned} & 689.88 h+689.88 h \\ & 690.05 h+688.98 h \end{aligned}$	$\begin{aligned} & 88.68 \\ & 88.70 \end{aligned}$	-0.27	7
" "		$1398.98 h+1390.85 k$ $1400 \cdot 20 h+13^{88.65} h$		-0.13	$\begin{aligned} & 683 \cdot 90 h+693.90 h \\ & 686 \cdot 23 h+692 \cdot 70 h \end{aligned}$	$\begin{aligned} & 88.8 \mathrm{I} \\ & 88.83 \end{aligned}$	-0.27	8
22	$515 p$.	$\left\|\begin{array}{l} 1393 \cdot 48 h+1392 \cdot 43 h \\ 1392.80 h+1390 \cdot 40 h \end{array}\right\|$	$4 \cdot 34$ $41-33$	-0.	$\begin{aligned} & 719 \cdot 35 h+765 \cdot+3 h \\ & 722 \cdot 30 h+76++3 h \end{aligned}$	$\begin{aligned} & 85 \cdot+0 \\ & 85 \cdot 3 \end{aligned}$	-0.25	9
,, 24	4 17p.m.	$\left\lvert\, \begin{aligned} & 1355 \cdot 28 h+\mathrm{I} 382 \cdot 70 h \\ & 1355 \cdot 70 h+\mathrm{I} 380 \cdot 45 h \end{aligned}\right.$	$\begin{aligned} & 42 \cdot 96 \\ & 42 \cdot 95 \end{aligned}$	-0.17	$\begin{aligned} & 610.88 h+63405 h \\ & 612 \cdot 40 h+632.95 h \end{aligned}$	$\begin{aligned} & 9+.92 \\ & 9+.96 \end{aligned}$	25	10
" "	5 20p.m.	$\begin{aligned} & 1350 \cdot 50 h+1378 \cdot 28 h \\ & 1355 \cdot 28 h+1379 \cdot 35 h \end{aligned}$		-0.17	$\begin{aligned} & 627 \cdot 68 h+655 \cdot 08 k \\ & 627 \cdot 18 h+653 \cdot 18 h \end{aligned}$	$\begin{aligned} & 93 \cdot 68 \\ & 93.71 \end{aligned}$	-0.25	11
25	12 noon	$\begin{aligned} & 1348 \cdot 33 h+1357 \cdot 90 h \\ & 1351 \cdot 50 h+1359 \cdot 25 h \end{aligned}$		-0.17	$\begin{aligned} & 583 \cdot 18 h+587 \cdot 00 h \\ & 583 \cdot 43 h+584.63 h \end{aligned}$	$\begin{aligned} & 98.22 \\ & 98.21 \end{aligned}$	-0.16	12
"		$\left\{\begin{array}{l} 13^{6}+40 h+1336 \cdot 03 h \\ 13^{6} 5 \cdot 60 h+1335 \cdot 68 h \end{array}\right.$	$\begin{aligned} & +4.00 \\ & 43.99 \end{aligned}$	-0.17	$\begin{aligned} & 575 \cdot 45 h+571 \cdot 15 h \\ & 575 \cdot 03 h+569 \cdot 58 k \end{aligned}$	$\begin{aligned} & 98 \cdot 76 \\ & 98 \cdot 77 \end{aligned}$	-0.16	13
"	3 47p.i	$\left\|\begin{array}{l} 1336 \cdot 80 h+1343 \cdot 58 \\ 1337 \cdot 90 h+1342 \cdot 6 \end{array}\right\|$		-0.17	$\begin{aligned} & 599 \cdot 00 h+603 \cdot 93 k \\ & 598 \cdot 75 h+600.65 k \end{aligned}$	$\begin{aligned} & 96.62 \\ & 96.63 \end{aligned}$	-0.20	14
"	437 p.m.	$\left\|\begin{array}{c} 1338 \cdot 70 h+1339 \cdot 00 h \\ 1339 \cdot 88 h+1337 \cdot 00 h \end{array}\right\|$	$\begin{aligned} & 44 \cdot 55 \\ & 44 \cdot 56 \end{aligned}$	-0.17	$\begin{aligned} & 591.83 h+617.78 k \\ & 593.80 h+617.40 h \end{aligned}$	$\begin{aligned} & 96 \cdot 39 \\ & 96 \cdot 37 \end{aligned}$	0.20	15
27	$04.5 \mathrm{p} . \mathrm{m}$	$\begin{aligned} & 539 \cdot 18 h+537.95 k \\ & 540 \cdot 40 h+533.38 \end{aligned}$	$\begin{aligned} & 99 \cdot 30 \\ & 99 \cdot 24 \end{aligned}$	-0.14	$\left\|\begin{array}{l} 1654 \cdot 80 h+1638 \cdot 38 \\ 1656 \cdot 00 h+1637 \cdot 45 h \end{array}\right\|$	$\begin{aligned} & 42 \cdot 95 \\ & 42.96 \end{aligned}$	-0.15	16
"	5 O	$\begin{aligned} & 744 \cdot 03 h+763 \cdot 85 h \\ & 745 \cdot 63 h+763 \cdot 13 h \end{aligned}$	$\begin{aligned} & 89 \cdot 11 \\ & 89 \cdot 08 \end{aligned}$	-0.32	$\left\|\begin{array}{l} 1651 \cdot 50 h+1626 \cdot 30 h \\ 1553 \cdot 33 h+1624 \cdot 78 h \end{array}\right\|$	$\begin{aligned} & 43.8 \mathrm{I} \\ & 43.8 \mathrm{I} \end{aligned}$	-0.13	17
28	1142 m m.	$\begin{aligned} & 608.98 h+617.53 h \\ & 612.03 h+616.58 h \end{aligned}$	$\begin{aligned} & 95.89 \\ & 95.90 \end{aligned}$	-0.25	$\left\|\begin{array}{l} 1617 \cdot 95 h+1632 \cdot 70 h \\ 1620 \cdot 48 h+1633 \cdot 13 h \end{array}\right\|$	$\begin{aligned} & +5 \cdot 11 \\ & 45 \cdot 13 \end{aligned}$	-0.13	18
"	40	$\begin{aligned} & 668 \cdot 70 h+682 \cdot 08 h \\ & 668 \cdot 48 h+679 \cdot 30 k \end{aligned}$	$\begin{aligned} & 93 \cdot 32 \\ & 93 \cdot 29 \end{aligned}$	-0.27	$\left\|\begin{array}{l} 1605 \cdot 10 h+1637 \cdot 03 h \\ 1605 \cdot 3^{8} h+163^{6 \cdot 3} \end{array}\right\|$	$\begin{aligned} & 4.5 .65 \\ & 45.66 \end{aligned}$	-0.17	19
" "	4 35pm	$\begin{aligned} & 667 \cdot 83 h+672 \cdot 73 h \\ & 668 \cdot 95 h+672 \cdot 35 h \end{aligned}$	$\begin{aligned} & 93.60 \\ & 93.63 \end{aligned}$	-0.27	$\left\|\begin{array}{l} 1615 \cdot 5^{8} h+1625 \cdot 8 \circ h \\ 1616 \cdot 3^{\circ} h+1624 \cdot 68 h \end{array}\right\|$	$\begin{aligned} & 45 \cdot 76 \\ & 45 \cdot 78 \end{aligned}$	-0.17	20
Mar. 3	+ op.m.	$\begin{aligned} & 667 \cdot 00 h+683.85 h \\ & 669 \cdot 55 h+684.18 k \end{aligned}$	$\begin{array}{r} 93.69 \\ 95.68 \end{array}$	-0.27	$\left\|\begin{array}{l} 1613 \cdot 88 h+1625 \cdot 18 h \\ 1614.78 h+1623 \cdot 90 k \end{array}\right\|$	$\begin{aligned} & 46 \cdot 41 \\ & 46 \cdot 4 I \end{aligned}$	-0.17	21
" ,	5 2op.m	$\begin{aligned} & 692 \cdot 58 h+692 \cdot 75 h \\ & 696 \cdot 3^{8} h+692 \cdot 68 h \end{aligned}$	$\begin{aligned} & 92.77 \\ & 92.79 \end{aligned}$	-0.26	$\left\|\begin{array}{l} 1606.80 h+1624 \cdot 50 h \\ 1608.88 h+1623.33 h \end{array}\right\|$	$\begin{aligned} & 46.77 \\ & 46.78 \end{aligned}$	-0.17	22
	11 10a.m.	$\left\|\begin{array}{c} 1042 \cdot 48 h+1101 \cdot 10 h \\ 1041 \cdot 60 h+1097 \cdot 08 h \end{array}\right\|$	$\begin{aligned} & 74 \cdot 53 \\ & 74 \cdot 52 \end{aligned}$	-0.19	$\left\|\begin{array}{l} 1611 \cdot 23 h+1624 \cdot 75 h \\ 1612 \cdot 70 h+1624 \cdot 03 h \end{array}\right\|$	$\begin{aligned} & 46 \cdot 33 \\ & 46 \cdot 33 \end{aligned}$	-0.17	2.3
	noolt	$\left\|\begin{array}{\|c} 10.58 \cdot 43 h+1068 \cdot 53 h \\ 1060.80 h+1066 \cdot 98 \end{array}\right\|$	$\begin{aligned} & 74 \cdot 88 \\ & 74 \cdot 90 \end{aligned}$	-0.19	$\left\|\begin{array}{l} 1613 \cdot 05 h+1625 \cdot 55 h \\ 1612 \cdot 83 h+1624.05 h \end{array}\right\|$	$\begin{aligned} & 4^{6 \cdot 32} \\ & 46.35 \end{aligned}$	-0.17	24
	- $30 \mathrm{p} . \mathrm{m}$	$\left\|\begin{array}{c} 1054 \cdot 93 h+1062 \cdot 68 h \\ 1056 \cdot 2.5 h+1060 \cdot 95 h \end{array}\right\|$	$\begin{aligned} & 75 \cdot 19 \\ & 75 \cdot 20 \end{aligned}$	-0.19	$\left\|\begin{array}{l} 1612 \cdot 05 h+1626 \cdot 38 h \\ 1613 \cdot 13 h+1625 \cdot 20 h \end{array}\right\|$	$\begin{aligned} & +6 \cdot 3.5 \\ & +6.37 \end{aligned}$	-0.17	2.5

The mean of the results by the two observers in each comparison being taken, and the temperatures corrected for errors of thermometers, we get the results shown in the next table, where the order of the comparisons has for convenience been altered.

No. of Comparison.	Difference of Length in Micrometer Divisions.	Difference of Length in Millionths of a Yard.	Temperature		Remarks.
			Bronze.	Steel.	
1	$81 \cdot 21 / 2+89 \cdot 16 h$	+ 135.83	38.69	$38^{\circ} \cdot 67$	Both bars cold.
2	$73.92 h+73.72 h$	11770	$39 \cdot 87$	39.66	" »
3	$103.25 h+44.58 k$	11775	40.14	39.93	" "
28	$1 \cdot 18 h+5.54 k$	$2 \cdot 17$	46.63	$44^{\prime} 70$	" "
29	- $0.89 h+5.33{ }^{h}$	3.53	$46 \cdot 58$	$44 \% 0$	" ,
30	$2.34 h+15.75 k$	14.44	$46 \cdot 28$	44.68	",
31	- $1.78 h+19.93 h$	14.50	$46 \cdot 26$	$44^{\prime} 68$	\% 2
32	${ }^{10} 009 \%+10.71 k$	16.58	$46 \cdot 23$	44.71	" ,
46	$87.76 k+66 \cdot 62 k$	$123.0+$	$41 \cdot 34$	$42 \cdot 14$	" "
47	$79^{\circ} \mathrm{O} 3^{h}+73.59 \%$	121.66	+1.23	$41^{\circ} 90$	", "
4^{8}	$80 \cdot 82 h+70 \cdot 40 k$	120.53	41'19	41.81	" "
49	$75.40 \%+62.85 h$	${ }^{110} 19$	$41 \cdot 35$	41^{161}	", "
50	$72 \cdot 15{ }^{1}+64 \cdot 24^{k}$	+ 108\%72	41.44	$4{ }^{1} 64$	" "
	$67231 / 2+626.49 k$	+ 103531	41'19	$85 \cdot 16$	Bronze cold. Steel hot.
6	$722 \cdot 81 h+695 \cdot 84{ }^{\text {k }}$	$1{ }^{1} 350 \cdot 88$	$40 \cdot 41$	88.32	",
7	$717.25 h+696 \cdot 54 k$	1127.02	$40 \cdot 56$	${ }^{88} 4.42$	", "
8	$714.52 h+696 \cdot 45^{h}$	1124.77	$40 \cdot 67$	88.55	" "
11	$725 \cdot 46 h+724 \cdot 69 k$	1156.03	42.97	93.44	" "
10	$743 \cdot 85 h+748 \cdot 08 k$	1189.35	42.78	94.69	" "
5	$839.78 h+784 \cdot 12 k$	1294.46	39.76	94.75	" "
15	$746.47 h+720.41 k$	1169.33	$44^{\prime} 3^{8}$	$96 \cdot 18$	", "
4	$827.85 h+846.35 h$	1334.67	39.57	$96 \cdot 33$	", "
14	$738 \cdot 47 h+740 \cdot 83 h$	1179.28	$44 \cdot 22$	$96 \cdot 42$	", "
12	$766 \cdot 61 h+772 \cdot 76 k$	1237117	$43 \cdot 69$	98.05	", "
13	$789 \cdot 76 k+765 \cdot 49 k$	+ 123978	43.82	$98 \cdot 60$	" \quad
27	$544.74 h+537 \cdot 89 h$	- 863.04	74.10	$46 \cdot 32$	Bronze hot. Steel cold.
25	$545^{\circ} 72 h+539.73^{k}$	865.29	74.21	$46 \cdot 28$	" "
23	$569.93 h+55^{\prime} 3^{\circ} \mathrm{h}$	873.03	74.33	$46 \cdot 16$	"
24	$553 \cdot 32 h+557.54 k$	885.57	74'70	$46 \cdot 16$	" "
25	$557^{\circ 00 / k}+563.97^{k}$	893.63	$75^{\circ} 0$	46•19	"

No. of Comparison.	Difference of Lexath in Microncter Divisions.	Difference of leugth in Millionths of a Yard.	Temperature.		תemarks.	
			Bronze.	Steel.		
38	$700 \cdot 38 h+707 \cdot 85 h$	-1122.63	$80^{\circ} 95$	$\stackrel{\mathrm{c}}{4} \mathrm{C} 8$	Bronze loot.	Steel cold.
39	$708 \cdot 24 h+706 \cdot 87 h$	1128.10	81.05	+4.83	"	,
37	$705.99 h+718 \cdot 49 h$	$1] 35.59$	81.23	44.80	"	"
17	907.59h $+862.05 k$	1410.66	88.77	43.68	"	,
22	$913.36 h+931.20 k$	$1470 \cdot 48$	92.52	$46 \cdot 60$	"	"
19	$936.65 h+956 \cdot 02 h$	1508.83	93.03	45.8	"	,
20	$947.55 h+952.70 h$	${ }^{1} 514.85$	93.34	45.60	"	"
21	$946 \cdot 05 h+940 \cdot 52 h$	1503.93	$9.3{ }^{\circ}+1$	46*24	,	,
18	5008.71 h + $1015.86 k$	161396	95.64	4499	"	"
35	1019.89h + 1032.12h	$1635.8+$	$96 \cdot 02$	44.64	"	"
36	$1047{ }^{\circ} 11 / 2+1044^{\prime 12} / 2$	$1667^{\circ} 09$	$97 \cdot 18$	$47^{7} 6$	"	"
33	$1077.97 h+1086.01 h$	1725^{10}	$98 \cdot 78$	+ ${ }^{2} 2$	"	"
34	$1069.22 h+1099.52 h$	1728.93	$98 \cdot 90$	+4.29	"	,
16	$1115.6 \mathrm{I} h+1102 \cdot 25^{h}$	- $1768 \cdot 02$	99•13	+2.80	,	"
40	$265.80 \%+246.51 /$	$-408 \cdot 38$	81.59	79.95	Both bars hot.	
41	$231 \times 95 h+240 \cdot 45 h$	$376 \cdot 60$	79.91	78.51	:, "	
42	$229.13 h+248 \cdot 23 h$.	$380 \cdot 57$	$80 \cdot 16$	78.87	"	
43	$307.09 h+320.50 h$	$500 \cdot 32$	91.44	90.48	" "	
44	$26730 \mathrm{l}+29749 k$	$450 \cdot 29$	88.42	88.26	", ",	;
45	$270 \cdot 70 k+276 \cdot 76 k$	$-436 \cdot 43$	87.81	88.16	"	

Let now at the temperature of 40°, the Steel bar exceed the Bronze in length by a quantity z; also let

$$
\begin{aligned}
& y=\text { expansion of Bronze bar for } 1^{\circ} \\
& y^{\prime}=\text { expansion of Steel bar }
\end{aligned}
$$

then the difference of length when the Bronze has the temperature t and the Steel the temperature t^{\prime} will be

$$
\begin{equation*}
z+\left(t^{\prime}-40\right) y^{\prime}-(t-40) y \tag{16}
\end{equation*}
$$

and if the actual observed difference of length under these circumstances be n, there results from this observation the equation

$$
\begin{equation*}
(t-40) y-\left(t^{\prime}-40\right) y^{\prime}-z+n=0 \tag{17}
\end{equation*}
$$

Proceeding thus with all the comparisons, we get the following system of equations:-

$$
\begin{align*}
- & 1.31 y+1.33 y^{\prime}-z+135.83=0 \tag{18}\\
- & 0.13 y+0.34 y^{\prime}-z+117.70=0 \\
+ & 0.14 y+0.07 y^{\prime}-z+117.75=0 \\
& 6.63 y-4.70 y^{\prime}-z+\quad 2.17=0 \\
& 6.58 y-4.70 y^{\prime}-z+ \\
& 6.28 y-4.68 y^{\prime}-z+14.44=0 \\
& 6.26 y-4.68 y^{\prime}-z+ \\
& 6.23 y-4.71 y^{\prime}-z+16.50=0 \\
& 1.34 y-2.14 y^{\prime}-z+123.04=0 \\
& 1.23 y-1.90 y^{\prime}-z+121.66=0
\end{align*}
$$

$$
\begin{aligned}
& 1 \cdot 19 y-1.81 y^{\prime}-\approx+120 \cdot 53=0 \\
& 1.35 \%-1.61 y-z+110 \cdot 19=0 \\
& 1 \cdot 44 y-1.64 y-z+108 \cdot 7^{2}=0 \\
& 1 \cdot 19 y-45 \cdot 16 y^{\prime}-z+1035 \cdot 31=0 \\
& 0.41 y-48.32 y-z+1130.88=0 \\
& 0.56 y-48.42 y^{\prime}-z+1127.02=0 \\
& 0.67 y-48.55 y^{\prime}-z+1124.77=0 \\
& 2.97 y-53.44 y^{\prime}-z+1156.03=0 \\
& +2.78 y-54.69 y^{\prime}-z+1189.35=0 \\
& -0.24 y-54.75 y^{\prime}-z+\mathbf{1} 294 \cdot 46=0 \\
& +4.3^{8}!y-56 \cdot 18 y^{\prime}-z+1169.33=0 \\
& -0.43 y-56.33 y-z+1334.67=0 \\
& +4.22 y-56.42 y^{\prime}-z+1179 \cdot 28=0 \\
& 3.69 y-58.05 y^{\prime}-z+1227.17=0 \\
& 3.82 y-58 \cdot 60 y^{\prime}-z+1239 \cdot 78=0 \\
& 34 \cdot 10 y-6.32 y-z-863.04=0 \\
& \text { 34.2Iy-6.28y-z-865.29=0 } \\
& 34 \cdot 33 y-6.16 y-z-873.03=0 \\
& 34 \cdot 70 y-6 \cdot 16 y^{\prime}-z-885 \cdot 57=0 \\
& 35.00 y-6.19 y^{\prime}-\approx-893.63=0 \\
& 40.95 y-4.78 y^{\prime}-z-1122.63=0 \\
& \text { 41.05y-4.83y-z-1128.10 } y^{\prime}-0 \\
& 4 \mathrm{I} \cdot 23 y-4.80 y^{\prime}-z-1135 \cdot 59=0 \\
& 48.77 y-3.68 y^{\prime}-z-1410.66=0 \\
& 52.52 y-6.60 y^{\prime}-z-1470.48=0 \\
& 53.03 y-5.48 y^{\prime}-z-1508.83=0 \\
& 53.34 y-5.60 y^{\prime}-z-1514.85=0 \\
& 53.41 y-6.24 y^{\prime}-z-1503.93=0 \\
& 55.64 y-4.99 y^{\prime}-z-16 \text { 13.96 }=0 \\
& 56.02 y-4.64 y^{\prime}-z-1635.84=0 \\
& 57.18 y-4.76 y^{\prime}-z-1667.09=0 \\
& 58 \cdot 78 y-4.22 y^{\prime}-z-1725 \cdot 10=0 \\
& 58 \cdot 90 y-4.29 y^{\prime}-z-1728.93=0 \\
& \text { 59.13y-2.80 } y^{\prime}-z-1768.02=0 \\
& 4 \mathrm{I} \cdot 59 y-39.95 y^{\prime}-z-408 \cdot 38=0 \\
& 39.91 y-38.51 y^{\prime}-z-376.60=0 \\
& 40 \cdot 16 y-38.87 y^{\prime}-z-380 \cdot 57=0 \\
& 51.44 y-50.4^{8} y^{\prime}-z-500.3^{2}=0 \\
& 48.42 y-48.26 y^{\prime}-z-450.29=0 \\
& +47.8 \text { I } y-48 \cdot 16 y^{\prime}-z-436 \cdot 43=0
\end{aligned}
$$

Proceeding by the method of least squares, we should now form three equations from which those values of $z y y^{\prime}$ would result which make the sum of the squares of the
residual errors a minimum. But we must first consider a peculiarity of the equations which may render it desirable to treat them in a slightly different manner. Although the equations are all of the same form yet they are divided into four groups distinctive in character. In the first thirteen we have comparisons of two cold bars, in the remainder we have comparisons of a cold bar with a hot one, or of two hot bars, both of them situated in a cold room. We must therefore expect that the residual errors of the first thirteen equations will be very much smaller than those of the remaining equations. But we must not give less weight to these last equations because of their being liable to greater errors, for the errors are not wholly errors of observation. Here then we have an anomaly which leads us to pursue a course somewhat different from the ordinary one. The first group of equations, it will be seen, enable us to ascertain the difference in length of the two bars at a certain low temperature, as 43° or thereabouts. In fact if we know the proportion of y, y^{\prime}, we can ascertain the difference of length at a temperature which can also be found out : let τ be that temperature, and let the first group of equations be-

$$
\begin{gathered}
\left(t_{1}-\tau\right) y-\left(t_{1}^{\prime}-\tau\right) y^{\prime}-u+n_{1}=0 \\
\left(t_{2}-\tau\right) y-\left(t_{2}^{\prime}-\tau\right) y^{\prime}-u+n_{2}=0 \\
\vdots \\
\vdots \\
\left(t_{13}-\tau\right) y-\left(t_{13}^{\prime}-\tau\right) y^{\prime}-u+n_{13}=0
\end{gathered}
$$

Let the mean of the temperatures be $t_{0} t_{0}$; and of the observed differences of length let n_{0} be the mean: then $u=n_{0}$ if

$$
\left(t_{0}-\tau\right) y-\left(t_{0}^{\prime}-\tau\right) y^{\prime}=\circ ;
$$

or which is the same if

$$
\tau=\frac{1}{2}\left(t_{0}+t_{0}^{\prime}\right)+\frac{1}{2}\left(t_{0}-t_{0}^{\prime}\right) \frac{y+y^{\prime}}{y-y^{\prime}}
$$

Now an experimental calculation gives $y=32 \cdot 8 \quad y^{\prime}=2 \mathrm{I} \cdot \mathrm{I}$; thus we get

$$
\begin{aligned}
& \tau=43^{\circ} \cdot 75 \\
& u=77 \cdot 43
\end{aligned}
$$

that is at $43^{\circ} \cdot 75$ the difference of length is $77 \cdot 43$, the steel bar being the longer. We shall now refer all our other equations to the temperature of $43^{\circ} \cdot 75$, thus z is eliminated and the equations become as follow:-

$$
\begin{align*}
& -2.56 y-4 \mathrm{I} .41 y^{\prime}+957.88=0 \tag{19}\\
& -3.34 y-44.57 y^{\prime}+1053.45=0 \\
& -3.19 y-44.67 y^{\prime}+1049.59=0 \\
& -3.08 y-44.80 y^{\prime}+1047.34=0 \\
& -0.78 y-49.69 y^{\prime}+1078.60=0 \\
& -0.97 y-50.94 y^{\prime}+1111.92=0 \\
& -3.99 y-51.00 y^{\prime}+1217.03=0 \\
& +0.63 y-52.43 y^{\prime}+1091.90=0 \\
& -4.18 y-52.58 y^{\prime}+1257.24=0 \\
& +0.47 y-52.67 y^{\prime}+1101.85=0 \\
& -0.06 y-54.30 y^{\prime}+1149 \cdot 74=0 \\
& +0.07 y-54.85 y^{\prime}+1162.35=0
\end{align*}
$$

$$
\begin{aligned}
& 30 \cdot 35 y-2 \cdot 57 y^{\prime}-940 \cdot 47=0 \\
& 30 \cdot 46 y-2 \cdot 53 y^{\prime}-942 \cdot 72=0 \\
& 30 \cdot 58 y-2 \cdot 41 y^{\prime}-950 \cdot 46=0 \\
& 30 \cdot 95 y-2 \cdot 41 y^{\prime}-963 \cdot 00=0 \\
& 31 \cdot 25 y-2 \cdot 44 y^{\prime}-971 \cdot 06=0 \\
& 37 \cdot 20 y-1 \cdot 03 y^{\prime}-1200 \cdot 06=0 \\
& 37 \cdot 30 y-1 \cdot 08 y^{\prime}-1205 \cdot 53=0 \\
& 37 \cdot 48 y-1 \cdot 05 y^{\prime}-1213 \cdot 02=0 \\
& 45 \cdot 02 y+0.07 y^{\prime}-1488 \cdot 09=0 \\
& 48 \cdot 77 y-2 \cdot 85 y^{\prime}-1547 \cdot 91=0 \\
& 49 \cdot 28 y-1 \cdot 73 y^{\prime}-1586 \cdot 26=0 \\
& 49 \cdot 59 y-1 \cdot 85 y^{\prime}-1592 \cdot 28=0 \\
& 49 \cdot 66 y-2 \cdot 49 y^{\prime}-1581 \cdot 36=0 . \\
& 51 \cdot 89 y-1 \cdot 24 y^{\prime}-1691 \cdot 39=0 \\
& 52 \cdot 27 y-0.89 y^{\prime}-1713 \cdot 27=0 \\
& 53 \cdot 43 y-1 \cdot 01 y^{\prime}-174452=0 \\
& 55 \cdot 03 y-0 \cdot 47 y^{\prime}-1802 \cdot 53=0 \\
& 55 \cdot 15 y-0 \cdot 54 y^{\prime}-1806 \cdot 36=0 \\
& 55 \cdot 38 y+0.95 y^{\prime}-1845 \cdot 45=0 \\
& 37.84 y-36 \cdot 20 y^{\prime}-485 \cdot 8 \mathrm{I}=0 \\
& 36 \cdot 16 y-34 \cdot 76 y^{\prime}-454 \cdot 03=0 \\
& 36 \cdot 41 y-35 \cdot 12 y-458 \cdot 00=0 \\
& 47 \cdot 69 y-46 \cdot 73 y^{\prime}-577 \cdot 75=0 \\
& 44 \cdot 67 y-44 \cdot 51 y^{\prime}-527 \cdot 72=0 \\
& 44 \cdot 06 y-44 \cdot 41 y^{\prime}-513 \cdot 86=0
\end{aligned}
$$

These equations represent comparisons taken under similar circumstances, they are consequently of the same degree of accuracy, and we shall solve them by the method of least squares. The final equations are

$$
\begin{array}{r}
48422 \cdot 85 y-10192 \cdot 41 y^{\prime}-1379838 \cdot 86=0 \tag{20}\\
-10192 \cdot 4 \mathrm{I} y+3956 \mathrm{I} \cdot \mathrm{~g}^{8} y^{\prime}-502559 \cdot 64=0
\end{array}
$$

Putting \mathbf{A}, B, for the absolute terms of these equations, they become on elimination

$$
\begin{align*}
& y+.000021835 \mathrm{~A}+.000005625 \mathrm{~B}=0 \tag{21}\\
& y^{\prime}+.000005625 \mathrm{~A}+.000026726 \mathrm{~B}=0
\end{align*}
$$

and restoring again the values of A, B, we get

$$
\begin{align*}
y & =32 \cdot 9566: \text { Reciprocal of weight } \tag{22}
\end{align*}=.00002183
$$

The errors of the different comparisons resulting from these values of y and y^{\prime} together with the value of z or u at $43^{\circ} \cdot 75$, are as shown in the following Table:-

Both cold.		Steel hot.	Bronze cold.	Bronze	Steel cold.		hot.
No. of Comp.	lirror.	No. of Conip.	Error.	No. of Comp.	Error.	No. of Comp.	Error.
1	-0.70	9	-4.12	27	+5.29	40	-5.95
2	-0.92	6	-1.23	26	$+7 \cdot 52$	41	+0.98
3	+2.31	7	-2.27	23	+6.28	42	$-2 \cdot 38$
28	-0.48	8	-3.55	24	$+5.93$	43	$+3.56$
29	-0.77	11	-0.23	25	$+7.12$	44	+1.11
30	+0.68	10	+0.34	3^{8}	+4.10	45	-3.01
31	+0.08	5	$+4.65$	39	+0.86		
32	+0.54	15	+1.47	37	-0.06		
46	+0.31	4	$+5.11$	17	-2.90		
47	+0.39	14	$+1.06$	22	-1.02		
48	-0.15	12	-3.05	19	$+1.18$		
49	-0.98	13	$+2.18$	20	$+2.83$		
50	-0.12			21	+2.50		
				18	-7.55		
				35	-9.49		
				36	-5.06		
				33	+1.11		
				34 16	-0.24		
				16	-0.18		

Here we see that the errors of the comparisons when the bars are both cold are very much smaller than when one or both of the bars are hot. Of the thirteen errors in the first group six are greater than 0.54 , six less, and one equal to that quantity. Hence we infer that the probable error of u is about $\pm 0 \cdot 15$. Now the absolute terms of the equations from which we have determined y, y^{\prime}, are all dependent on the adopted value of u, so that the errors in the three last columns of the above Table are also affected by the probable error of u. But the errors in these columns are so very large in comparison with the probable error of u that we may lay aside this consideration.

The sum of the squares of the errors of the 37 equations is $592 \cdot 95$, hence the probable error of a comparison, one or both bars being hot, is

$$
\begin{equation*}
674 \sqrt{\frac{592 \cdot 95}{37-2}}= \pm 2 \cdot 77 \tag{23}
\end{equation*}
$$

It is not easy to account for the large errors. The heated air rising from the hot bar just under the observing microscopes often caused an irregular refraction and apparent motion in the object viewed, similar to that observed in looking with a telescope at a terrestrial object on a hot day. This was sometimes troublesome, and may have produced an error of as much as two micrometer divisions at times, but not probably more. Also the exceeding freedom of the bars from being suspended, was another cause of a small amount of error, as carriages passing in the neighbourhood produced an oscillation of sometimes as much as ± 1.5 division. But this hardly affected the certainty of the bisections at any time.

Another, probably more serious, source of error was an irregularity in the distance of the copper tanks from the bar at different parts of its length. The average distance was about $\frac{3}{16}$ of an inch, but the difficulty of making copper tauks ten feet long perfectly straight involved some yariations on that distance. In order to remedy this, after the conclusion of the observations just recorded, the boxes were taken to pieces and the tauks
somewhat improved as to straightness. The tanks were then replaced at a greater distance than before, namely, about ${ }_{16}^{7}$ inch.

The probable errors of y, y^{\prime}, are,-

$$
\begin{array}{ll}
y \ldots \ldots \pm 2 \cdot 77 \sqrt{\cdot 00002183} & = \pm \cdot 0120 \tag{24}\\
y^{\prime} \ldots \ldots \pm 2 \cdot 77 \sqrt{\cdot 00002673} & = \pm \cdot 0143
\end{array}
$$

so that the final results for expansion are,-

$$
\begin{align*}
& \text { Expansion of Bronze Bar }=32 \cdot 9566 \pm \cdot 0199 \tag{25}\\
& \text { Expansion of Steel Bar }=21 \cdot 1938 \pm \cdot 0143
\end{align*}
$$

If we express these quantities as a fraction of the bar's length we get the ordinary form of " co-efficient of expansion" thus, -

$$
\begin{array}{ll}
\text { Co-efficient of Expansion of Bronze } & =\cdot 0000098870 \pm \cdot 0000000039 \\
\text { Co-efficient of Expansion of Steel } & =\cdot 0000063581 \pm \cdot(000000043
\end{array}
$$

5.

In the second series of experiments which extended over 12 days, viz, from the 29th April to the ioth May, the roller frames were restricted to a strictly vertical movement, so as to obtain the co-efficient of expansion under circumstances more similar to those in which the bars will be actually used. The bars then, it is to be understood, in the second series of experiments were not swinging, but resting on two rollers, which admitted only of adjustment for level and focus.

The observations are given in the annexed rable :-

Date.		Bronze Dar.			Stecl Bar.			No. of Comparison
Day.	Hour.	Microweter Measurements.	$\begin{aligned} & \text { Obs" } \\ & \text { T'eur. } \end{aligned}$	Corr ${ }^{11}$ to 'Therm".	Micrometer Measurements.	$\begin{aligned} & \text { Obsil } \\ & \text { Temp. } \end{aligned}$	Corrus to Therm".	
$\begin{gathered} 1865 . \\ \text { April } 29 \end{gathered}$	н. м. il $50 \mathrm{a} . \mathrm{m}$.	$1040 \cdot 85 h+1045+3 k$ $1042 \cdot 20 h+1044.55$	$57^{\circ} 3$ 57.31	-0.09	$\left.\begin{aligned} & 858 \cdot 43 h+863 \cdot 73 k \\ & 858 \cdot 85 h+863 \cdot 40 k \end{aligned} \right\rvert\,$	$\begin{gathered} 7 \cdot 89 \\ 74 \cdot 91 \end{gathered}$	$-0^{\circ} \cdot 26$	1
	- 30p.m.	$\left\|\begin{array}{l} 1042 \cdot 33 h+1644^{2} \cdot 25 \\ 1043 \cdot 25 h+1044^{2} 20 k \end{array}\right\|$	$\begin{aligned} & 57.30 \\ & 57.29 \end{aligned}$	-0.09	$\begin{aligned} & 855 \cdot 78 h+870 \cdot 05 h \\ & 856 \cdot 00 h+868 \cdot 90 h \end{aligned}$	$\begin{aligned} & 74 \cdot 81 \\ & 74 \cdot 80 \end{aligned}$	$-0 \cdot 26$	2
" "	3 35p.m.		$\begin{aligned} & 57.27 \\ & 57.26 \end{aligned}$	-0.09	$\begin{aligned} & 865 \cdot 78 h+850 \cdot 68 k \\ & 868 \cdot 03 h+851 \cdot 18 k \end{aligned}$	$\begin{aligned} & 75^{\circ} 04 \\ & 75^{\circ} 05 \end{aligned}$	-0.26	3
" "	4 20p.m.	$1042 \cdot 25 h+1046 \cdot 60 h$ $\|1043.08 h+1046 \cdot 08 k\|$	$\begin{aligned} & 57 \cdot 28 \\ & 57 \cdot 27 \end{aligned}$	-0.09	$\begin{aligned} & 860 \cdot 80 h+856 \cdot 60 k \\ & 861 \cdot 90 h+85 \cdot 85 k \end{aligned}$	$\begin{aligned} & 75.01 \\ & 7500 \end{aligned}$	-0.26	4
May 1		$\left\|\begin{array}{l} 1092 \cdot 10 h+\operatorname{Iog} 1 \cdot 48 k \\ 1092 \cdot 50 h+1089 \cdot 23 k \end{array}\right\|$	$\begin{aligned} & 54 \cdot 33 \\ & 54 \cdot 32 \end{aligned}$	-0.14	$\begin{aligned} & 706 \cdot 50 h+718 \cdot 90 h \\ & 708 \cdot 13 h+719 \cdot 40 h \end{aligned}$	$\begin{aligned} & 85.05 \\ & 85.05 \end{aligned}$	-0.30	5
" "	4 op.m.	$\left\|\begin{array}{l} 1091 \cdot 08 h+1089 \cdot 05 h \\ 1092 \cdot 40 h+1087 \cdot 88 h \end{array}\right\|$	$\begin{aligned} & 54.41 \\ & 54.40 \end{aligned}$	-0.14	$\begin{aligned} & 706 \cdot 93 h+711 \cdot 18 k \\ & 708 \cdot{ }_{5}^{8} h+710 \cdot 38 k \end{aligned}$	$\begin{aligned} & 85 \cdot 28 \\ & 85 \cdot 28 \end{aligned}$	-0.30	6
3	1135 am m.	$\left\|\begin{array}{l} 1314 \cdot 25 h+1320 \cdot 23 h \\ 1315 \cdot 00 h+13^{18} 03 \end{array}\right\|$	$\begin{aligned} & 56 \cdot 16 \\ & 56 \cdot 17 \end{aligned}$	-0.10	$\begin{aligned} & 821 \cdot 18 h+831 \cdot 83 h \\ & 822 \cdot 08 h+830 \cdot 25 h \end{aligned}$	$\begin{aligned} & 96 \cdot 34 \\ & 96 \cdot 34 \end{aligned}$	-0.27	7
" "	- 5p.m.	$\left\|\begin{array}{l} 1313 \cdot 68 h+1318 \cdot 13 k \\ 1316 \cdot 3^{8} h+1317.90 k \end{array}\right\|$	$\begin{aligned} & 56 \cdot 25 \\ & 56 \cdot 24 \end{aligned}$	-0.10	$\begin{aligned} & 8 \mathrm{I} 6.05 h+837 \cdot 28 h \\ & 819.20 h+838 \cdot 28 h \end{aligned}$	$\begin{aligned} & 96 \cdot 24 \\ & 96 \cdot 22 \end{aligned}$	-0.27	8

Date.		Bronze Bar.		Steel Bar.	No. of Cumparikun.
Day.	Hour.	Micronteter Measurements.	$\begin{array}{c:c} \text { Obs }{ }^{4} & \text { Comre to } \\ \text { Tenp. } & \text { Therma. } \end{array}$		
$\begin{gathered} 1865 \\ \text { May } 3 \end{gathered}$	$\begin{aligned} & \text { н. м. } \\ & \mathbf{3} 35 \mathrm{p} . \mathrm{mm} \end{aligned}$		$\begin{array}{c:c}\stackrel{\circ}{6.59} & -0.04 \\ 56.61\end{array}$	$\begin{aligned} & 82+75 h+831 \cdot 08 k \\ & 826 \cdot 10 h+830.55 \\ & 86 \cdot 33 \end{aligned}$	9
" "	4 8p.m.	$1303^{\prime} 10 h+1314^{\circ} 00 h$ $1304.88 h+1313.30 k$	$\begin{aligned} & 56 \cdot 69 \\ & 56 \cdot 70 \end{aligned}$	$\begin{aligned} & 8_{23.60 h+837.43 k}^{96.21}-0.27 \\ & 823.40 h+834.05 k 96.21 \end{aligned}$	10
, 4	II $300 . \mathrm{m}$.	$\begin{aligned} & 919.23 h+920.50 k \\ & 919.58 h+918.25 k \end{aligned}$	$\begin{aligned} & 75.96-0.19 \\ & 7595 \end{aligned}$	$1298.03 h+1298.3^{8}$ h $61.0 \not-0.19$ $1299.00 k+1297+5^{4} 61.05$	11
"	120 noon	$\begin{aligned} & 923.23 h+898.43 k \\ & 929 \cdot 28 h+901.45 k \end{aligned}$	$\begin{aligned} & 76 \cdot 20-0.19 \\ & 76 \cdot 21 \end{aligned}$	$1298 \cdot 23 h+1299.63 h_{1}^{1} 60.95-0.19$ ${ }^{1} 300.03 h+1299^{\circ} 90 k_{1} 60.94$	12
, 5	11 loa.m.	$\begin{aligned} & 923.80 h+917.73 h \\ & 925 \cdot 75 h+916 \cdot 50 h \end{aligned}$	$\begin{aligned} & 76.03-0.19 \\ & 76.02 \end{aligned}$	$\left\{\begin{array}{lll} 13+0.55 h+1341 \cdot 85 h & 5^{8.03} & -0.19 \\ 13+2.95 h+13+0.98 & 5 & 58.03 \end{array}\right.$	1.3
" "	$11500 . \mathrm{m}$.	$\begin{aligned} & 915.50 h+918.50 k \\ & 915.98 h+915.28 h \end{aligned}$	$\begin{aligned} & 76 \cdot 20 \\ & 76 \cdot 28 \end{aligned}$	$\begin{aligned} & 1339.60 h+134+73 k \\ & 138 \cdot 04-0.19 \\ & 13+1.95 h+134.38 h \\ & 58.03 \end{aligned}$	If
" ${ }^{\prime}$	3 45p.m.	$\begin{aligned} & 816 \cdot 10 h+809 \cdot 28 k \\ & 819 \cdot 75 h+809 \cdot 93 h \end{aligned}$	$\begin{array}{l\|l} 8 \mathrm{I} \cdot 3^{8} & -0.27 \\ 8 \mathrm{I} \cdot 3^{6} \end{array}$	$133^{6 .} 30 h+1345^{\circ} 65^{k} \quad 5^{8.07}$-0'19 ${ }^{1} 337.98 h+13++{ }^{\prime} 28 h \quad 58 \cdot 08$	15
" "	4 20p.m.	$\begin{aligned} & 810 \cdot 98 h+8_{1} 8 \cdot 85 h \\ & 8 \pm 170 h+8_{5} \cdot 8_{3} h \end{aligned}$	$\begin{aligned} & 81 \cdot 34 \\ & 8: 34 \end{aligned}-0.27$	$133^{8.93} h+1344^{\circ} 50 k \quad 5^{8.12}-0.19$ ${ }^{1} 340 \cdot 85 h+1343 \cdot 83 k \quad 5^{8.12}$	16
" 6	11 7a.m.	$492 \cdot 33 h+517 \cdot 15 h$ $491.58 h+513.85 h$	$\begin{array}{l\|l} 96 \cdot 44 & -0.27 \\ 96 \cdot 42 \end{array}$	$134^{8 \cdot 2} 5 h+1350 \cdot 08 k \quad 57.57-0.18$ ${ }^{1} 350 \cdot 3^{8} h+{ }^{1} 349.23$ k 57.5^{8}	17
" "	$11148 \mathrm{am} . \mathrm{m}$	$\begin{aligned} & 50+93 h+492 \cdot 88 h^{\prime} \\ & 5 \cdot 1 \cdot 70 h+495.93 h \end{aligned}$	$\begin{aligned} & 96 \cdot 47-0.27 \\ & 96 \cdot 4.5 \end{aligned}$	$\begin{aligned} & 1348 \cdot 60 h+13+9 \cdot 65 k \\ & 137.65-0.18 \\ & 1350.70 h+1349^{\circ} 28 h \\ & 57.67 \end{aligned}$	18
" "	3 4op.m.	$\begin{aligned} & 532 \cdot 65 h+531 \cdot 13 k \\ & 533 \cdot 35 h+530 \cdot 05 k \end{aligned}$	$\begin{aligned} & 95.06-0.28 \\ & 95.08 \end{aligned}$	$\left\{\begin{array}{l} 13+9^{\circ} 90 h+13+5^{\circ} 25 k \\ 135^{\circ} 95 h+13+4^{\circ} 2 k k 55^{\circ}-0.19 \end{array}\right.$	19
" "	4 I 5p.m.	$\begin{aligned} & 532 \cdot 75 h+526.93 h \\ & 533.73 h+524.68 h \end{aligned}$	$\begin{array}{l\|l} 95 \cdot 20 & -0.27 \\ 95 \cdot 20 \end{array}$	$1347^{\circ} 15 h+13+7.30 k 5^{8.01}-0.19$ I $347.93 h+13+5^{\circ} 20 k \quad 5^{8.00}$	20
" 8	4 45p.m.	$\left\{\begin{array}{l} 1302.35 h+1331 \cdot 83 h \\ 1299.50 h+1324.53 \end{array}\right.$	$\begin{array}{l\|l} 56 \cdot 73 & -0.09 \\ 56.73 & \end{array}$	$\left.\left\lvert\, \begin{array}{lll} 362.75 h+1367.83 h & 56.54 \\ 1365.60 h+1366.50 k & 56.54 \end{array}\right.\right)^{-0.16}$	21^{*}
\# 9	IO 45a.m.	$\left\|\begin{array}{l} 1318 \cdot 45 h+1327.48 k \\ 1319.48 h+1325.23 h \end{array}\right\|$	$\begin{array}{l\|l} 56 \cdot 52 \\ 56.54 & -0.09 \end{array}$	$\left\|\begin{array}{llll} 136+28 h+1365 \cdot 35 & 56 \cdot 46 \\ 1369.50 h+1367 & -0.16 & 56+7 \end{array}\right\|$	22
" "	I 1158.0	$\left\lvert\, \begin{aligned} & 1320.23 h+1323.40 h \\ & 1321.65 h+1322.65 h \end{aligned}\right.$	$\begin{aligned} & 56.53-0.09 \\ & 56.54 \end{aligned}$		23
" "	3 50p.m.	$1322 \cdot 50 h+1319 \cdot 88 h$ $1323.73 k+1318 \cdot 68 k$	$\begin{aligned} & 56.63:-0.09 \\ & 56.66 \end{aligned}$	$\left.\left\|\begin{array}{lll} 1361 \cdot 00 h+1373.40 h & 56 \cdot 54 \\ 13^{6} 3 \cdot 25 h+1372 \cdot 45 & 56 \cdot 5+ \end{array}\right\|-0.16 \right\rvert\,$	$\because+$
"	4 20p.m.	$\left\|\begin{array}{l} 1319.50 h+\mathrm{I} 326.80 h \\ 1318.90 h+1321.95 h \end{array}\right\|$	$\begin{aligned} & 56.67 \\ & 56.68 \end{aligned}$	$\left\lvert\, \begin{array}{ll\|l\|l\|} 1365 \cdot 75 h+1369 \cdot 3.5 h & 56.55 & -0.16 \\ 1367.80 h+1367.30 h & 56.57 \end{array}\right.$	25
" 10	10 30a.m.	$\left\|\begin{array}{l} 1319 \cdot 13 h+1318 \cdot 40 h \\ 132 \mathrm{I} \cdot 30 h+1316 \cdot 88 h \end{array}\right\|$	$\begin{array}{l\|l} 56 \cdot 86 & -0.09 \\ 56 \cdot 85 & \end{array}$	$\left\|\begin{array}{l\|l\|l\|l\|} 1363 \cdot 95 h+1362 \cdot 45 & 56 \cdot 83 \\ 1368 \cdot 95 h+13^{66 \cdot 15} & 56 \cdot 80 \end{array}\right\|-0 \cdot 16$	26
" "	11 oa.m.	$\begin{aligned} & 1317.50 h+1320.25 h \\ & 13 \mathrm{I} 8.80 h+1319.53 h \end{aligned}$	$\begin{array}{l\|l} 56 \cdot 87 \\ 56 \cdot 85 & -0.09 \end{array}$	$\left\|\begin{array}{ll\|l\|l} 1371.93 h+1361.50 & 56.85 & -0.16 \\ 1370.65 h+1357.05 & 56.82 \end{array}\right\|$	27

* There are some apperent mistakes in the registry or reading of one of the micrometers on the Bronze bir in this comparison which cannot be unravelled and therefore not safely corrected. The comparison is rejected.

Taking now the means of the results for the two observers in each comparison, and correcting the observed temperatures, we form the next table.

No. of Comparison.	Difference of Length in Micrometer Divisions.	Difference of Length in Millionthe of a Yard.	Temperature.		Remsige.	
			Bronze.	Steel.		
1	$182.88 h+181.43 h$	$+290 \cdot 42$	57.21	$\stackrel{\circ}{74.64}$	Bronze cold.	Steel hot.
2	$186 \cdot 90 h+174.75 h$	288.28	57.20	74.54	"	"
3	$175 \cdot 30 h+193.18 h$	293.77	57.17	$74 \cdot 78$,	,
4	$181.31 h+189.62 h$	295.71	57.18	$74 \cdot 74$	"	"
5	$33^{84} 99 h+371 \cdot 20 k$	$602 \cdot 80$	$54 \cdot 18$	$8{ }^{8}+75$,	"
6	$3^{8} 3.99 h+377.68 h$	$607 \cdot 18$	54.26	84.98	"	,
7	$492.99 h+488.09 k$	782.09	$56 \cdot 06$	96.07	,	,
8	$497.41 h+480.23 k$	779.33	$56 \cdot 14$	95.96	,	"
9	$480 \cdot 72 h+482 \cdot 49 k$	768.15	$56 \cdot 51$	96.05	,	"
10	$480 \cdot 24 h+477.91 h$	$+763.5^{8}$	$56 \cdot 60$	95.94	"	,
II	$379.1 \mathrm{I} h+378.54 k$	-603.98	75.76	60.85	Bronze hot.	Steel cold.
12	$372.88 h+399.82 k$	616.02	76.01	60.75	"	"
13	$416.98 h+424.30 k$	670.67	75.83	57.84	"	,
14	425.03 $h+427.4 \mathrm{I} k$	$679 \cdot 55$	76.09	57.84	"	"
15	$519 \cdot 22 h+535 \cdot 36 h$	$840 \cdot 72$	81.10	57.89	",	",
16	$528.55 h+526.82 k$	$8_{41} \cdot 32$	81.07	57.93	,	,
17	$857.36 h+834 \cdot 15 k$	$1348 \cdot 41$	$96 \cdot 16$	$57 \cdot 39$,	"
18	$841 \cdot 34 h+855.06 k$	1352.36	$96 \cdot 19$	57.48	,	"
19	817.42 $h+814.17 k$	$1300 \cdot 67$	94•79	$57 \cdot 76$,,	,
20	$814.30 h+820 \cdot 4.5 k$	- 1303.20	94.93	57.81	"	"
22	$47 \cdot 93 h+40 \cdot 14 k$	- 70.20	$56 \cdot 44$	$56 \cdot 30$	Both bars cold	
23	$49 \cdot 26 h+41 \cdot 40 h$	$72 \cdot 26$	$56 \cdot 44$	$56 \cdot 32$	- *	
24	$39.01 h+53.64 k$	73.88	$56 \cdot 55$	$56 \cdot 3^{8}$,	
25	47.57h+43.95h	72.96	$5^{6 \cdot 58}$	$56 \cdot 40$	"	
26	$46 \cdot 24 h+46 \cdot 66 h$	74.06	$56 \cdot 76$	56.65	,	
27	$53 \cdot 14 h+39 \cdot 3^{8} h$	- 73.74	56.77	56.67	$"$	

In the last group of comparisons the mean of the temperatures of the Bronze Bar is $56^{\circ} \cdot 590$, and of the Steel $56^{\circ} .453$, whence, proceeding as before, we get $\tau=56^{\circ} .84$, and u the mean of the corresponding measured differences of length $=-72.85$; so that at $56^{\circ} \cdot 84$ the Steel bar is shorter than the Bronze by $7^{2} \cdot 85$. Our equations of condition will then be of the form

$$
\begin{equation*}
y\left(t-56^{\circ} .84\right)-y^{\prime}\left(t^{\prime}-56^{\circ} .84\right)+n+72.85=0 \tag{26}
\end{equation*}
$$

they will be found as follow :-

$$
\begin{align*}
& 0.37 y-17.80 y^{\prime}+363.27=0 \tag{27}\\
& 0.36 y-17 \cdot 70 y^{\prime}+36 \mathrm{I} \cdot 13=0 \\
& 0.33 y-17.94 y^{\prime}+366.62=0 \\
& 0.34 y-17.90 y^{\prime}+368.55=0 \\
& -2.66 y-27.91 y^{\prime}+675.65=0 \\
& -2.58 y-28.14 y+680.03=0 \\
& -0.78 y-39.23 y^{\prime}+854.94=0 \\
& -0.70 y-39 \cdot 12 y^{\prime}+852 \cdot 18=0 \\
& -0.33 y-39.21 y^{\prime}+841 \cdot \mathrm{co}=0 \\
& -0.24 y-39 \cdot 10 y^{\prime}+836 \cdot 43=0
\end{align*}
$$

$$
\begin{aligned}
& +18.92 y-4.01 y^{\prime}-531.13=0 \\
& +19.17 y-3.91 y^{\prime}-543.17=0 \\
& +18.99 y-1.00 y^{\prime}-597.82=0 \\
& +19.25 y-1.00 y^{\prime}-606.70=0 \\
& +24.26 y-1.05 y^{\prime}-767.87=0 \\
& +24.23 y-1.09 y^{\prime}-768.47=0 \\
& +39.32 y-0.55 y^{\prime}-1275.56=0 \\
& +39.35 y-0.64 y^{\prime}-1279.51=0 \\
& +37.95 y-0.92 y^{\prime}-1227.82=0 \\
& +38.09 y-0.97 y^{\prime}-1230.35=0
\end{aligned}
$$

These solved by the method of least squares give

$$
\begin{array}{r}
8633.30 y-157.42 y^{\prime}-279487.85=0 \tag{28}\\
-\quad 157.4^{2} y+9016.96 y^{\prime}-185636.93=0
\end{array}
$$

writing A and B for the absolute terms of these equations, they become on eliminating $y y^{\prime}$

$$
\begin{align*}
& y+.00011587 \mathrm{~A}+.00000202 \mathrm{~B}=0 \tag{29}\\
& y^{\prime}+.00000202 \mathrm{~A}+.00011094 \mathrm{~B}=0
\end{align*}
$$

restoring the values of A and B, we get these results:-

$$
\begin{align*}
y & =32 \cdot 7591 \ldots . . \text { Reciprocal of weight } \tag{30}
\end{align*}=.0001159
$$

The corresponding system of errors of comparisons is shown in the following Table :-

Both Bars cold.		Steel hot. Bronze cold.		Steel cold. Bronze hot.	
No. of Comp.	Error.	No. of Comp.	Error.	No. of Comp.	Error.
22	$+0.98$	$\underline{1}$	-1.23	11	$+3.82$
23	-1.51	2	- 1.60	12	+2.09
24	-0.80	3	-2.17	13	+3.11
25	+0.68	4	+0.94	14	$+2.75$
26	+0.19	5	-2.03	15	$+4.65$
27	$+0.42$	6	+0.08	16	+2.22
		7	-0.69	17	+0.89
		8	+1.49	18	-3.98
		9	+0.53	19	-4.08
		10	+1.24	20	-3.17

The sum of the squares of the errors of the 20 equations, (shown in the two righthand columns,) is $124 \cdot 38$, hence the probable error of one comparison is,-

$$
\begin{equation*}
\pm \cdot 674 \sqrt{\frac{124 \cdot 3^{8}}{20-2}}= \pm 1 \cdot 772 \tag{31}
\end{equation*}
$$

The probable errors of $y y^{\prime}$ are consequently

$$
\begin{aligned}
& y \ldots \ldots \ldots \pm \pm 1 \cdot 772 \sqrt{\sqrt{.0001159}}= \pm 0.0191 \\
& y^{\prime} \ldots \ldots \ldots \pm 1 \cdot 772 \sqrt{\sqrt{0001109}}= \pm 0.0187
\end{aligned}
$$

so that the final results for expansion are-

$$
\begin{align*}
\text { Expansion of Bronze Bar } & \doteq 32.7591 \pm 0.0191 \tag{33}\\
" \quad \text { Steel Bar } & =21 \cdot 1594 \pm 0.0187
\end{align*}
$$

or in another form-

$$
\begin{equation*}
\text { Co-e/ficient of Expansion of Bronze }=\cdot 0000098277 \pm \cdot 000000057 \tag{34}
\end{equation*}
$$

6.

The results to which we are conducted by the second series of experiments for expansion, show in the case of either bar a smaller co-efficient. In the case of the Steel bar the difference is immaterial, but in the case of the Bronze bar it is very sensible. The question now arises, is this difference due to the circumstance that the bars were not so free to expand as in the first experiments? If so, expansion must always be variable according to amount of friction of the rollers. -An accumulation of oil and dust about the asles in course of time would produce a gradually diminishing rate of expansion.

The errors in the second series are materially smaller than in the first. This is, doubtless, owing in part to the increased distance of the tanks from the bars as before explained, and in part to the fact that the range of temperature was smaller. But there is this analogy between the two systems of residual eirors, that in each case the errors are larger when the Bronze Bar is hot. In the first series, the average of the errors of comparison, when the Steel Bar is hot is 2.44 , and when the Bronze is hot 3.75 ; in the second series the corresponding averages are $1 \cdot 20,3 \cdot 0 \%$. This leads us to the conclusion that the computed probable crror for the Bronze Bar is in either series too small.

Again, examining the errors of the comparisons with Bronze hot in either series, there is an inclination to a predominance of + errors at the lower temperatures, and - errors at the higher temperatures. This may or may nat be accidental, it may arise from a rate of expansion varying with the temperature. It may be interesting to see the individual rates of expansion of the Bronze Bar that would suit the different comparisons with Bronze hot and Steel cold. They are shown in the following Table :-

Co-efficients of Exprinsion of Bronze Bar.
Finst Selies of Eifierimests.

No. of Comparison.	'Temperature.	Co-cfficient of Expausion.	No. of Comparison.	Temperature.	Co-efficient of Expansion.
27	$\stackrel{\circ}{\square}$	-000009835	19	$93^{\circ} \mathrm{O}$	-000009880
26	74.2	-000009813	20	93.3	-000009870
23	74.3	-00000982.5	21	93.4	-000009872
24	747	-000009829	18	95.6	-00000993I
2.5	75°	-000009819	35	$96 \cdot 0$	-000009941
3^{8}	80.9	-00000985+	36	97.2	-000009915
39	81.0	-000009880	33	$98 \cdot 8$	-000009881
37	81.2	-00000y887	34	$98 \cdot 9$	-000009888
17	88.8	-000009906	16	$99^{\circ} \mathrm{I}$	-000009888
22	92.5	-000009893			

Temperature of the cold bar about 44°.

Seconis Serieb of Expeminenta.

No. of Comparison.	Temperature	Co-efficient of Expansiou.	No. of Comparison.	Tempersture	Cu-efficient of Expansiou.
11	$\stackrel{\circ}{\circ} \mathrm{B}$	-000009767	16	$8{ }_{1}^{\circ}{ }^{\circ}$	
12	76.0	-000009795	17	$96 \cdot 2$	-0000098:1
13	$75 \cdot 8$	-000009779	18	$96 \cdot 2$	-000009858
14	$76 \cdot 1$	-000009785	19	94^{-8}	-000009860
15	81-1	-000009770	20	$9+9$	-000009851

Temperature of the cold bar about 57°.
Similarly we may exhibit the coefficients of expansion of the Steel bar, which would satisfy the equations of conditions, or comparisons, when the Bronze is cold and Steel hot ; They are as in the following Tables:-

Co-efficients of Expansion of Strel Bar.
Fibet Sellies of Experiments.

No. of Comparisou.	Temperature.	Co-eflicient of Expansion.	No. of Comparison.	T'emperature.	Co-eficicut of Expansion.
	$8 \stackrel{\circ}{9}$			$\stackrel{\circ}{\square}$	
9	$85^{\circ} 2$	-000006328	5	$94^{\circ} 7$. 000006385
6	$88 \cdot 3$	-00000635	15	$96 \cdot 2$	-000006367
7	$88 \cdot 4$	-000006343	4	96.3	-000006387
8	$88 \cdot 6$	-000006334	14	$96 \cdot 4$.000006364
11	93.4	-000006357	12	98.0	-000006341
10	947	. 000006360	3	$98 \cdot 6$	-000006370

Cold bar about 42°.

Sccond Senies of Eiperimenta.

No. of Comparison.	Termperature.	Co-eflicient of Expansion.	No. of Comparison.	'Tenperature.	Co-efficient of Expansion.
	${ }^{7} 4^{\circ} 6$	-000006327	6	$85^{\circ} \mathrm{O}$	
2					
2	74.5	-000006321	7	961	-000006343
3	$74^{\circ} 8$	-000006312	8	$96 \cdot$	-000006359
4	$74^{\prime 7}$	-000006363	9	$96 \cdot 0$	-000006352
5	847	-000006326	IO	$95^{\prime} 9$	-000006357

Cold bar about 56°.
It seems almost unnecessary to remark that final values for expansion are not to be gathered from these Tables, which are merely illustrative of the degree of precision attained. The final results remain as already stated, equations (25, 33).

7.

There remain a few comparisons with the Bronze bar cold and the Steel hot to be considered. In point of time these belong to the first series of experiments. They are as in the following Table:-

Date.		Bronze Bar.			Steel Bar.			No. of Comparison.
Day.	Hour.	Micronicter Measurements.	$\begin{gathered} \text { Obs } \\ \text { Temp. } \end{gathered}$	Corr" ${ }^{10}$ Therm".	Micrometer Measurements.	$\begin{gathered} \text { Obs } \\ \text { O'mp. } \end{gathered}$	Corra to 'Therm".	
1865. Mar. 15	H. M.							
	10.50 mm .	$\left\|\begin{array}{l} 1387 \cdot 30 h+1369 \cdot 80 k \\ 1388 \cdot 70 h+1369 \cdot 00 k \end{array}\right\|$	$\begin{aligned} & 43.39 \\ & 43.38 \end{aligned}$	-0.17	$\left\|\begin{array}{l} 1076 \cdot 75 h+1071 \cdot 28 k \\ 1078 \cdot 50 h+1069 \cdot 45 \end{array}\right\|$	$\begin{aligned} & 62.67 \\ & 62.69 \end{aligned}$	-0.13	51
"	$11250 . \mathrm{m}$	$\left\lvert\, \begin{aligned} & 1376 \cdot 6_{5} h+1380 \cdot 33 h \\ & 1380 \cdot 50 h+1378 \cdot 05 h \end{aligned}\right.$	$\begin{aligned} & 43 \cdot 38 \\ & 43: 37 \end{aligned}$	-0.17	$\left\|\begin{array}{l} 1084.08 h+1083.90 k \\ 1085^{\circ} 45 h+10845^{\prime} 30 h \end{array}\right\|$	$\begin{aligned} & 61 \cdot 90 \\ & 61 \cdot 90 \end{aligned}$	-0.13	52
, 10	II 30a.m.	$\left\|\begin{array}{l} 1388 \cdot 18 h+1389 \cdot 85 h \\ 1386 \cdot 90 h+1388 \cdot 75 h \end{array}\right\|$	$\begin{aligned} & 42.86 \\ & 42.86 \end{aligned}$	-0.17	$\left\|\begin{array}{l} 1185 \cdot 48 h+1190 \cdot 85 h \\ 1186 \cdot 15 h+1189.83 \end{array}\right\|$	$\begin{aligned} & 53 \cdot 89 \\ & 53 \cdot 89 \end{aligned}$	-0.13	53
	- 7p.m.	$\left\|\begin{array}{l} 1388 \cdot 15 h+1389 \cdot 00 h \\ 1388 \cdot 43 h+1388 \cdot 48 h \end{array}\right\|$	$\begin{aligned} & 42 \cdot 87 \\ & 42 \cdot 86 \end{aligned}$	-0.17	1191.68 $h+1194.3^{8} h$ 1192'18 $h+1193 \cdot 88 h$	$\begin{aligned} & 53.56 \\ & 53.57 \end{aligned}$	-0.14	54
	4 万p.m.	$\left\|\begin{array}{l} \mathrm{I} 887 \cdot 50 h+\mathrm{I} 387 \cdot 43 h \\ \mathrm{I} 388 \cdot 75 h+\mathrm{I} 386 \cdot 18 h \end{array}\right\|$	$\begin{aligned} & 42.89 \\ & 42.89 \end{aligned}$	-0.16	$\left\|\begin{array}{l} 1208 \cdot 08 h+1231^{\circ} 90 h \\ 1212 \cdot 88 h+1233^{\prime} 43 k \end{array}\right\|$	$\begin{aligned} & 51 \cdot 35 \\ & 5 \cdot 36 \end{aligned}$	-O'II	55
	$45^{\circ} \mathrm{p} . \mathrm{m}$.	$\left\|\begin{array}{l} 1388.58 h+1385.03 h \\ \mathrm{I} 389.98 h+1383.80 k \end{array}\right\|$	$\begin{aligned} & 42.94 \\ & 42.93 \end{aligned}$	-0.16	$\left\|\begin{array}{l} 1226 \cdot 30 h+1224 \cdot 80 k \\ 1227 \cdot 48 h+1224^{\prime} 13 h \end{array}\right\|$	$\begin{aligned} & 51 \circ 09 \\ & 51 \cdot 10 \end{aligned}$	-0.1I	56
, 17	- 10p.m.	$\left\lvert\, \begin{aligned} & 1384^{2} \cdot 28 h+1386 \cdot 3 \circ h \\ & 13^{8} 5^{\prime} \cdot 83 h+13^{8} 5^{\prime} 40 h \end{aligned}\right.$	$\begin{array}{r} 42 \cdot 93 \\ 42 \cdot 93 \end{array}$	-0.16	$\left\|\begin{array}{l} 1038 \cdot 68 h+1054 \cdot 60 h \\ 1039 \cdot 25 h+1055^{\circ} \cdot 5^{8} h \end{array}\right\|$	$\begin{aligned} & 64 \cdot 68 \\ & 64 \cdot 70 \end{aligned}$	-0.18	57
	$\bigcirc 50 \mathrm{p} . \mathrm{mn}$.	$\left\|\begin{array}{l} \mathrm{I} 383^{\circ} 40 h+\mathrm{I} 386 \cdot 73 \\ \mathrm{I} 3^{8} 5^{\circ} \cdot 23 h+\mathrm{I} 3^{8} 5^{\circ} 88 \end{array}\right\|$	$\begin{array}{r} 42 \cdot 96 \\ 42 \cdot 97 \end{array}$	-0.16	$\left\|\begin{array}{l} 1048 \cdot 45 h+1050.00 h \\ 1050 \cdot 88 h+1049 \cdot 50 h \end{array}\right\|$	$\begin{aligned} & 64 \cdot 44 \\ & 64 \cdot 46 \end{aligned}$	-0.18	58

Taking first the means of the pairs of results obtained by the two observers, then the difference of these means; and correcting the thermometer readings, we get the following : -

No. of Comparison.	Difference of Length in Micrometer Divisions.	Difference of Length is Millionths of a Yard.	Temperature.		Remarke.	
			Bronze.	Steel.		
$5{ }^{\text {I }}$	310.27 h + $299.03 h$	+ 485\%	$\stackrel{\circ}{4} \cdot$	$62^{\circ} 55$	Bronze cold.	Steel lot.
52	293.8ı $h+295.09 h$	469.46	$43^{\prime 2} 1$	61.77	"	,
53	200.72h + $198.96 k$	318.61	$42 \cdot 69$	53.76	",	"
54	$196 \cdot 3^{6} h+194.61 k$	311.67	42.70	53.43	"	",
55	177.65 $h+15+14 k$	264.46	$42 \cdot 73$	$5 \mathrm{I} \cdot 25$	"	",
56	$162.39 k+159.95 k$	256.96	$42 \cdot 78$	50.99	"	"
57	$346.09 h+332.76 h$	$541 \cdot 15$	$42 \cdot 77$	64×51	,	"
5^{8}	$334.65 h+336 \cdot 56 h$	+ 535.08	42.80	64.27	"	,

The equations of condition formed in the same manner as equations (19), namely, by the formula

$$
(t-43.75) y-\left(t^{\prime}-43.75\right) y^{\prime}+n-77.43=0
$$

are these-

$$
\begin{align*}
& -0.53 y-18.80 y^{\prime}+408.28=0 \tag{35}\\
& -0.54 y-18.02 y^{\prime}+392.03=0 \\
& -1.06 y-10.01 y^{\prime}+241 \cdot 18=0 \\
& -1.05 y-9.68 y^{\prime}+234.24=0 \\
& -1.02 y-7.50 y^{\prime}+187.03=0 \\
& -0.97 y-7.24 y^{\prime}+179.53=0 \\
& -0.98 y-20.76 y^{\prime}+463.72=0 \\
& -0.95 y-20.52 y^{\prime}+457.65=0
\end{align*}
$$

If here for y and y^{\prime} we substitute the final values obtained from the first series, namely, $y=32 \cdot 9566$ and $y^{\prime}=2 \mathrm{I} \cdot 193^{8}$; the equations will be very far from satisfied, the residual errors being-

$$
\begin{aligned}
& -7.63 \\
& -7.68 \\
& -5.91 \\
& -5.53 \\
& -5.54 \\
& -5.88 \\
& -8.56 \\
& -8.56
\end{aligned}
$$

Now this makes it clear that an entirely different value of y^{\prime} is required in theae comparisons. In order to obtain this value, substitute in the equations (35) y=32.9566 and they become-

$$
\begin{aligned}
& -18.80 y^{\prime}+390.81=0 \\
& -18.02 y^{\prime}+374.23=0 \\
& -10.01 y^{\prime}+206 \cdot 24=0 \\
& -9.68 y^{\prime}+199.63=0 \\
& -7.50 y^{\prime}+153.41=0 \\
& -7.24 y^{\prime}+147.56=0 \\
& -20 \cdot 76 y^{\prime}+431 \cdot 42=0 \\
& -20.52 y^{\prime}+426.34=0
\end{aligned}
$$

whence-

$$
\begin{gathered}
1832 \cdot 7785 y^{\prime}-3801 \mathrm{I} \cdot 4188=0 \\
\therefore y^{\prime}=20 \cdot 7398
\end{gathered}
$$

leaving the following errors of comparisons :-

$$
\begin{aligned}
- & 0.90 \\
- & 0.50 \\
+ & 1.37 \\
+ & 1.13 \\
+ & 2.14 \\
+ & 2.60 \\
- & 0.86 \\
- & 0.76
\end{aligned}
$$

with the probable error of the determination of y^{\prime} about $\pm{ }^{\circ} 024$.

The change of rate of expansion here brought out in the Steel bar from $21 \cdot 1938$ to 20.7398 is, doubtless, owing to the circumstance that in these last comparisons the temperature of the bar was not sustained. No current of warm water was running through the tanks, and, consequently, the bar was steadily, though very slowly, cooling. At II A.M. on 15th March the temperature of the bar was about 62°, and by 5 P.m. on the r6th it had cooled to 51°. On the morning of the 17 th it was again heated to above 65° and allowed to cool.

This result would lead us to expect that if the rate of expansion of a bar be deduced from observations made upon that bar while in a state of cooling, though only slowly, such deduced expansion is probably smaller than the true value.

The total number of micrometer and thermoneter readings in these expansion experiments, not including any of the observations for determination of the errors of thermometers, is 2720 micrometer, 2720 thermometer readings.

XVII.
 RE-DETERMINATION OF THE EXPANSIONS

OF

Oliand $\mathbf{O l}_{\mathbf{2}}$

1.

In a preceding section we have given the results of the experiments to which these bars were subjected in November 1857. The method adopted is open to objection on account of the inevitable state of cooling of the hot bar, tending to produce a constant error, and from the results of the last section it would seem probable that the expansions then obtained are too small. It was therefore thought desirable to obtain the expansions from the new apparatus.

The experiments or comparisons of the bars, hot and cold, extend over eleven days, between the 3rd and 16 th of November 1865, in all, 38 comparisons. In the last two, $\mathbf{O} \mathbf{I}_{1}$ being cold and $\mathbf{O} \mathbf{I}_{2}$ warm, the circulation of the water was stopped, so that the bar was cooling slowly, at the rate of one degree in twelve minutes.

The observations were conducted in the same manner, generally, as those described in the last section. There were, however, two points of difference that should be noted.

1. The boxes were covered with tueo folds of blanket instead of one.
2. The bars had each three thermometers instead of two.

The outer thermometers were situated about 18 inches from the ends of the bars, the third thermometer at six inches from the centre.

The following table contains the results of the comparisons. Each pair of lines forms one comparison; the upper line in each pair being the mean of the readings of one observer, Captain Clarke, R.E.; the under, that of the second (simultaneous) observer, Quartermaster Steel, R.E. It will be understood that each number in the columus headed "Micrometer Readings" is the mean of four readings, and each number in the columns headed "Observed Temperatures," the mean of six readings.

$\overrightarrow{0} \vec{\sim}^{\infty} \vec{\sim}$	No.	
	㫛	
 		응
	景	
 	$=$	
		0
 	¢	
 	*	

Taking now the mean of the results of the two observers, that is, of each pair of lines, we get the quantities as arranged in the next Table.

No.	Difference of Length in Micrometer Divisions.	$\mathbf{O l} \mathbf{l}_{1}-\mathbf{O l} \mathbf{l}_{2}$	$t_{1}-50^{\circ}$	$t_{2}-50^{\circ}$	$t_{1}-t_{2}$	$21.50\left(t_{1}\right.$	k
1	419.9ht 40.20k	+ 65.49	+ ${ }^{\circ} \mathrm{O} .09$	$+\stackrel{0}{0.21}$	-0.12	- 2.58	+ I'93
2	$44.76 h+37.31 k$	+ 6542	+ 0.10	$+0.21$	- O'11	- 2.37	+2.21
3	$39.86 h+42.35 k$	+ 65.54	+ O.II	$+0.25$	-0.14	- 301	+14.5
4	$42 \cdot 28 h+39.96 k$	+ 65.56	+0.12	+ 0.26	- 0.14	- 301	+143
5	$37.80 h+41.08 k$	+ 62.89	-0.58	-0.30	-0.28	- 6.02	+1.09
6	$40 \cdot 09 h+40 \cdot 33 k$	+64.11	-0.57	-0.30	-0.27	- $5 \cdot 81$	+0.08
7	$41.00 h+37.37 k$	+ 62.47	-0.58	-0.31	-0.27	- $5 \cdot 81$	$+1.72$
8	$36 \cdot 45 h+41 \cdot 38 k$	$+62.05$	- 2.26	- 1.92	-0.34	- 731	+0.64
9	$38 \cdot 98 h+40 \cdot 78 k$	+63.59	-2.26	- 1*92	-0.34	- 731	-0.90
10	$531 \cdot 84 h+531.57 k$	$+84774$	$+33.55$	- 2.66	$+36 \cdot 21$	$+778.52$	$+0.78$
11	$532.18 h+524.21 k$	+842.12	$+33.36$	- 2.54	+35.90	$+771.85$	-0.27
12	$518.44 h+537.16 k$	+841.54	+33.31	- 2.50	$+35.81$	+769.92	- I. 62
13	568.17h + 571.97k	+908.91	$+36 \cdot 44$	- 2.56	+39.00	$+838.50$	-0.41
14	$569.93 h+569.93 k$	+ 908.68	$+36 \cdot 44$	- 2.49	+38.93	$+837.00$	-1.68
15	$564.41 h+564.47 k$	+899.92	$+36 \cdot 42$	- 2.20	$+38.62$	$+830.33$	+0.41
16	$559.27 h+57153 k$	+90147	$+36.57$	2.11	+ 38.68	+831.62	+0.15
17	$56409 h+573.97 h$	+907.26	+37.08	- 1.79	+ 38.87	$+835.71$	-1.55
18	$573.49 h+566.75 h$	+908.97	$+37^{\circ} 14$	- 1172	+ 38.86	+835.49	-3.48
19	$564.52 h+576 \cdot 53 h$	+909.64	$+37.44$	- 14.46	+ 3880	$+836.35$	-3.29
20	$560 \cdot 15 h$ т $577.08 h$	+906.61	$+37 \cdot 3^{8}$	- 1.39	+38.77	$+833.56$	-3.05
21	$550.43 k+556.90 h$	+882.75	$+36 \cdot 21$	- 1.46	+37.67	+809.91	-2.84
22	$556 \cdot 69 h+55770 k$	+888.37	$+36 \cdot 42$	- 1.45	+ 37.87	+814.21	-4.16
23	$55535 h+551 \times 13 h$	+88.06	$+36 \cdot 38$	- 1.29	$+37.67$	$+809.91$	-2.15
24	$55^{2.37 h}+55779 k$	$+885.01$	$+36 \cdot{ }^{8}$	-1.23	+ 37.71	+810.77	-4.24
25	$45934 h+464.44 k$	$-736 \cdot 43$	- 2.71	+34.56	-37.27	-80131	+5.12
26	$465.68 h+463.42 k$	$-740 \cdot 67$	- 2.82	+34.71	-37.53	-806.90	$+3.77$
27	$491.69 h+478 \cdot 81 k$	-773.65	- 2.76	$+36 \cdot 33$	-39.09	-840.44	+3.21
28	$486.95 h+487.60 h$	$-776 \cdot 89$	- 2.68	$+36 \cdot 48$	-39.16	-841.94	+4.95
29	$454.14 h+454^{\circ} 94 h$	-72471	- 2.36	+34.47	$-36 \cdot 83$	-791.85	+2.86
30	453 '04 $h+45^{6.02} h$	-724.69	- 2.29	+ 34.46	$-36 \cdot 75$	-79013	$+4.56$
31	$479.57 h+473.92 k$	$-760 \cdot 10$	- 1.6I	$+36 \cdot 78$	$-38 \cdot 39$	-82.5.39	+4.71
32	$476.22 h+472.56 h$	-7.5634	- 1.56	$+36 \cdot 63$	$-38 \cdot 19$	-82109	$+5.25$
33	$474.33 k+450.18 k$	-736.97	- 1.20	$+3^{6 \cdot 15}$	-37.35	-803.03	+3.94
34	$459.33 h+463 \cdot 23 h$	-735.46	1.12 $-\quad 1.88$	$+36 \cdot 08$	-37.20	-799.80	+3.66 +5.85
35	$474.64 h+485.65 h$	-765.54	-1.88	$+36 \cdot 71$ +36.5	-38.59 -38.34	-829.69	+5.85 +4.28
36 37	$478.66 h+472.93 k$ 277.81 $259.54 k$	-758.59 -428.34	- 1.75	+36.59 +21.96	-38.34	-824.31	+4.28 -1.11
37 38	$277.81 h+259.54 k$ 237.37 l $20^{\circ} 4 \mathrm{I} k$	-428.34 -372.90	- 1.27	+2196 +19.52	-23.23 -20.72	-499.45 -44.48	-1.11 -2.58

2.

Let the lengths of the bars $\mathbf{O I}_{1}$ and $\mathbf{O I}_{2}$ be expressed thus

$$
\begin{align*}
& \mathbf{O I}_{1}=a_{1}+\left(t_{1}-50\right)\left(2 \mathrm{I} \cdot 5+y_{1}\right) \tag{I}\\
& \mathbf{O I _ { 2 }}=a_{2}+\left(t_{2}-50\right)\left(2 \mathrm{I} \cdot 5+y_{2}\right)
\end{align*}
$$

where
$2 \mathrm{I} \cdot 5+y_{1}=$ expansion of $\mathbf{O} 1_{1}$ for 1° Fahrenheit
(2)

Also let

$$
\begin{equation*}
70+z=a_{1}-a_{i} \tag{3}
\end{equation*}
$$

which is the difference of length of the bars $\left(O I_{1}-O I_{4}\right)$ when both are at the temperature $50^{\circ} \mathrm{F}$. So that when the one bar has the temperature t_{1} and the other the temperature t_{a}, the difference of length n is

$$
\begin{gathered}
n=70+z+\left(t_{1}-t_{2}\right) 21 \cdot 5+\left(t_{1}-50\right) y_{1}-\left(t_{1}-50\right) y_{z} \\
\therefore z+\left(t_{1}-50\right) y_{1}-\left(t_{2}-50\right) y_{2}+70+21 \cdot 5\left(t_{1}-t_{2}\right)-n=0
\end{gathered}
$$

Now let
then

$$
\begin{gathered}
t_{1}-50=f_{1} \\
t_{2}-50=f_{2} \\
70+21 \cdot 5\left(t_{1}-t_{2}\right)-n=k
\end{gathered}
$$

$$
\begin{equation*}
z+f_{1} y_{1}-f_{3} y_{z}+k=0 \tag{5}
\end{equation*}
$$

and each comparison will supply an equation of this form.
We shall now write down the different equations, the quantities $f_{1} f_{2} k$ being given in the last table.

$$
\begin{align*}
& z+0.09 y_{1}-0.21 y_{2}+1.93=0 \tag{6}\\
& z+0.10 y_{1}-0.21 y_{z}+2.21=0 \\
& z+0.11 y_{1}-0.25 y_{2}+1.45=0 \\
& z+0.12 y_{1}-0.26 y_{z}+1.43=0 \\
& z-0.58 y_{1}+0.30 y_{3}+1.09=0 \\
& z-0.57 y_{1}+0.30 y_{v}+0.08=0 \\
& z-0.58 y_{1}+0.31 y_{2}+1.72=0 \\
& z-2.26 y_{1}+1.92 y_{2}+0.64=0 \\
& z-2.26 y_{1}+1.92 y_{2}-0.90=0 \\
& z+33.55 y_{1}+2.66 y_{z}+0.78=0 \\
& z+33.36 y_{1}+2.54 y_{z}-0.27=0 \\
& z+33.31 y_{1}+2.50 y_{\mathrm{e}}-1.62=0 \\
& z+36.44 y_{1}+2.56 y_{y}-0.41=0 \\
& z+36.44 y_{1}+2.49 y_{\mathrm{y}}-\mathrm{I} .68=0 \\
& z+36.42 y_{1}+2.20 y_{z}+0.41=0 \\
& z+36.57 y_{1}+2.11 y_{z}+0.15=0 \\
& z+37.08 y_{1}+1.79 y_{2}-1.55=0 \\
& z+37 \cdot 14 y_{1}+1 \cdot 72 y_{2}-3 \cdot 4^{8}=0 \\
& z+37.44 y_{1}+1.46 y_{2}-3.29=0 \\
& z+37.38 y_{1}+1.39 y_{2}-3.05=0 \\
& z+36.21 y_{1}+1.46 y_{4}-2.84=0 \\
& z+36.42 y_{1}+1.45 y_{z}-4.16=0 \\
& z+36 \cdot 38 y_{1}+1 \cdot 29 y_{\mathrm{y}}-2 \cdot 15=0 \\
& z+36.48 y_{1}+1.23 y_{9}-4.24=0 \\
& z-2.71 y_{1}-34.56 y_{z}+5.12=0 \\
& z-2.82 y_{1}-34.71 y_{z}+3.77=0
\end{align*}
$$

$$
\begin{aligned}
& z-2.76 y_{1}-36.33 y_{2}+3.21=0 \\
& z-2.68 y_{1}-36.48 y_{2}+4.95=0 \\
& z-2.36 y_{1}-34.47 y_{2}+2.86=0 \\
& z-2.29 y_{1}-34.46 y_{2}+4.56=0 \\
& z-1.61 y_{1}-36.78 y_{2}+4.71=0 \\
& z-1.56 y_{1}-36.63 y_{2}+5.25=0 \\
& z-1.20 y_{1}-36.15 y_{2}+3.94=0 \\
& z-1.12 y_{1}-36.08 y_{2}+5.66=0 \\
& z-1.88 y_{1}-36.71 y_{2}+5.85=0 \\
& z-1.75 y_{1}-36.59 y_{2}+4.28=0 \\
& z-1.27 y_{1}-21.96 y_{2}-1.11=0 \\
& z-1.20 y_{1}-19.52 y_{2}-2.58=0
\end{aligned}
$$

The last two of these equations we shall omit in the determination of $y_{1} y_{2}$ for the reason that the bar was not maintained at a constant temperature; we therefore reserve them for subsequent and special examination.

We shall see that in these comparisons the apparent or residual errors are not materially greater, when one of the bars is hot and the other cold, than in the case of both bars being cold. We therefore proceed to treat the above equations after the method of least squares.

The equations (5) multiplied in the ordinary manner give

$$
\begin{align*}
36 z+\left(f_{1}\right) y_{1}-\left(f_{2}\right) y_{2}+(k) & =0 \tag{7}\\
\left(f_{1}\right) z+\left(f_{1}^{2}\right) y_{1}-\left(f_{1} f_{2}\right) y_{2}+\left(f_{1} k\right) & =0 \\
-\left(f_{2}\right) z-\left(f_{1} f_{2}\right) y_{1}+\left(f_{2}^{2}\right) y_{2}-\left(f_{2} k\right) & =0
\end{align*}
$$

The necessary multiplications and additions give

$$
\begin{align*}
& \left(f_{1}\right)=510.05 \tag{8}\\
& \left(f_{3}\right)=397.28 \\
& (k)=\quad 36.4^{1} \\
& \left(f_{1}^{2}\right)=19579 \cdot 26 \\
& \left(f_{1} f_{z}\right)=-1906.645 \\
& \left(f_{i}^{2}\right)=154^{82} \cdot 40 \\
& \left(f_{1} k\right)=-1113.20 \\
& \left(f_{2} k\right)=1988 \cdot 13
\end{align*}
$$

These substituted in equations (7) give

$$
\begin{array}{r}
36.00 z+510.050 y_{1}-397.280 y_{2}+36.41=0 \tag{9}\\
510.05 z+19579.260 y_{1}+1906.645 y_{2}-1113 \cdot 20=0 \\
-397.28 z+1906.645 y_{1}+15482.400 y_{2}-1988 \cdot 13=0
\end{array}
$$

If we put $\mathbf{A}, \mathbf{B}, \mathrm{C}$, for the absolute terms, and express $z y_{1} y_{2}$ in terms of these, there results

$$
\begin{align*}
& z+.1035871 \mathrm{~A}-.00299324 \mathrm{~B}+.00302667 \mathrm{C}=0 \tag{10}\\
& y_{1}-.0029932 \mathrm{~A}+.00013819 \mathrm{~B}-.00009382 \mathrm{C}=0 \\
& y_{1}+.0030267 \mathrm{~A}-.0009382 \mathrm{~B}+.000153^{81} \mathrm{C}=0
\end{align*}
$$

from which if we restore their numerical values to A, B, C, we get

$$
\begin{array}{lrl}
z=-1.086: & \text { Recip. of weight } & =.1035871 \tag{II}\\
y_{1}=+0.0763: & " & " \\
y_{2}=+0.0911: & ", & =.00013^{82} \\
& " & =.0001538
\end{array}
$$

These values of $z y_{1} y_{\mathrm{y}}$ substituted in the equations of condition give the following system of errors attached to the 36 comparisons:-

Both Bars cold.		OI, hot.		Ol, bot.	
Date.	Error.	Date.	Error.	Date.	Eror.
November 3	$+0.83$	November 7	$+2.48$	November 13	+0.68
" "	+1.11	" "	+1. 1	" ${ }^{\prime}$	-0.69
" "	+0.34	,	+0.05	" 14	-1.39
" "	+0.33	8	$+1.51$	" "	+0.33
" 4	-0.02	" "	+0.23	" "	-1.55
"	-1.02	" "	$+2.30$	" \quad "	+0.16
" \quad "	+0.62	" \quad "	+2.04	" 15	$+0.14$
" 6	-0.45	" 9	+0.35	" "	+0.71
" "	-1.99	" "	-1.58	" "	-0.53
4		" "	- 139	" \quad "	+1.20
		" ${ }^{\prime}$	-1.17	" 16	+1.28
		" 10	-ro3	" "	-0.28
		" "	-2.34		
		" "	-0.35		
		" "	-2.4		

The sum of the squares of these 36 errors is $55 \cdot 56$; hence the probable error of a single comparison is

$$
\begin{equation*}
\pm \cdot 674 \sqrt{\frac{55 \cdot 56}{36-3}}= \pm 0.875 \tag{12}
\end{equation*}
$$

and the probable errors of the determinations of $y_{1} y_{2}$

$$
\begin{align*}
& y_{1} \ldots \pm \pm 0.875 \sqrt{.00013^{82}}= \pm 0.0103 \tag{13}\\
& y_{2} \ldots \pm 0.875 \sqrt{.000153^{8}}= \pm 0.0109
\end{align*}
$$

We have then finally the expansions of the two bars-

$$
\begin{align*}
& \text { Expansion of } \mathrm{OI}_{1} \text { for } 1^{\circ} \text { Fahr. }=21^{\circ} 5763 \pm 0.0103 \tag{14}\\
& \text { Expansion of } \mathrm{Ol}_{2} \text { for } 1^{\circ} \text { Fahr. }=21.5911 \pm 0.0109
\end{align*}
$$

Or, if we put them in the shape of co-efficients of expansion
Co-efficient of Expansion of $\mathrm{OJ}_{1}=\cdot 0000064729 \pm{ }^{\circ} \cdot 000000031$
Co-efficient of Expansion of $\mathrm{OI}_{2}={ }^{\circ} 0000064773 \pm{ }^{\circ} 0000000033$

3.

The rates of expansion at which we have just arrived are-in accordance with the: remark on page 220, each larger than those obtained at page 79. In the case of Ol_{2} the difference is not very materinl, but in $\mathbf{O} \mathbf{I}_{1}$ it is of some importance. It should be remarked that the bars are in all respects similar one to the other; there is no difference cither in form, dimensions, material, or time and place of construction; so that there is every reason to assume a priori that the expausions should be equal.

Returning now to the last two of the equations of condition (6) if is then we substitute the values we have obtained for $z y_{1} y_{2}$, the residual errors are

$$
\begin{array}{r}
-4.30 \\
-5.54
\end{array}
$$

which shows that sone other value of y, would result from those comparisons taken by themselves. Adding the equations together we have

$$
2 z-2.47 y_{1}-41.48 y_{2}-3.69=0
$$

substituting $z=-\mathrm{I} .086: y_{1}=+0.0763$, this becomes

$$
\begin{gathered}
-41 \cdot 4^{8} y_{0}-6.05=0 \\
\therefore y_{2}=-0.146
\end{gathered}
$$

giving for the expansion of $\mathrm{OI}_{2} 2 \mathrm{I} \cdot 500-0.146=2 \mathrm{I} \cdot 354$ a result considerably in error, and in the anticipated direction.

On the evening of the 15 th November, the rollers on which the bar $\mathbf{O I}_{2}$ was supported were jammed so as to prevent their revolution. The object of this was to ascertain whether the friction so produced would on the heating of the bar the following morning diminish the expansion, as the bar under these circumstances would expand by sliding over the fixed rollers. The errors exhibited in the two first comparisons on the I6th show that this produced no effect whatever.

4.

An examination of the simultaneous micrometer readings of the two observers as recorded in the expansion experiments in this and the preceding section brings to light a certain amount of personal error. In each comparison the mean readings of each bar are given in the form

$$
\begin{aligned}
& a h+a^{\prime} k \\
& b h+b^{\prime} k
\end{aligned}
$$

where a, a^{\prime}, l, l, are each the mean of four micrometer readings; the first two appertaining to the observer A, the second two to the observer B. It will be remembered that a / h and $l i k$ are simultaneous readings, as also are $b h$ and $a^{\prime} k$. If z be the distance of the zeros of the microscopes, and u the length of the bar, then, but for crrors of observation,

$$
\begin{aligned}
& u+a h+b^{\prime} k-z=0 \\
& u+b h+a^{\prime} k-z=0
\end{aligned}
$$

If the bar remained absolutely undisturbed between the two pairs of observations these equations represent, that is to say, while the observers change places, then would also

$$
\begin{aligned}
& u+a h+a^{\prime} k-z=0 \\
& u+b h+b^{\prime} k-z=0
\end{aligned}
$$

hold good. But these do not always, as the bar was sometimes readjusted in focus on otherwise, besides being possibly shaken in the readings of the thermometers which took place in the interval. In the ordinury comparisons where there is only one observer, the thermometers are not read, nor the box containing the bars touched in any way, between the reading of the micrometers.

Now let the personal error of the observer A in reading the line under the micrometer H be e_{a}; and the personal error in reading the line under K , e_{a}, while e_{b}, e_{β} represent the corresponding personal errors of B. Then we have

$$
e_{b}+e_{a}-e_{a}-c_{\beta}=(b-a) h+\left(a^{\prime}-b^{\prime}\right) k=\mathrm{E}
$$

We now abstract this quantity E for each comparison, and place them in the following: Tables:-

Bronze Bar. 1st Series.

Date.	E.	Date.	E.	Date.	E.	Date.	E.
1865.		1865.		1865.		1865.	
Feb. 17	$+1.27$	Feb. 25	+ 1.62	Mareh 4	$+2.57$	March 9	$+3.01$
, 18	$1 \cdot 31$	" \quad "	2.53	${ }^{(1)}$	392	", "	3.33
	2.71	, $\quad 97$	4.61	:, ,	$3 \cdot+5$:, "	$\cdots 77$
$\cdots 20$	I. 59	," \quad,	$1 \cdot 8.5$, .,	$3 \cdot 03$	10	$2 \cdot 03$
	2.13	" 28	3.19	" "	1.64	", "	29.3
" 21	$1 \cdot 13$	"	$2 \cdot 04$	\because	2.07	" ,	$2 \cdot 27$
"	1.75	" $\quad 3$	1.19	7	+13	11	2.82
	$2 \cdot 73$	March 3	$1 \cdot 77$	" ${ }^{\prime}$	$2 \cdot 50$	", ,	$2 \cdot 13$
- 22	1.08	" "	3.08	",	4.37	" $"$	2.79
24	$2 \cdot 13$		2.50	"	3.93	" "	1'79
" ${ }^{\prime \prime}$	2.96	"	$3 \cdot 12$	8		" "	+1.55
" 25	$1 \cdot 45$	"	24.3	" ${ }^{\prime}$	3.21		
" "	+ 1.23	"	$+2.65$	" "	+ 291		

Bronze Bar. -nd Series.

Date.	1.	Date.		Date.	F.	Dalce.	E.
1865.		1865.		1865.		1865.	
April $\quad 29$	+1.78	May 3	+2.3+	May :	+239	May 9	+2.61
" "	$0 \cdot 77$	", "	1.59	" "	$1 \cdot 98$	" "	173
" "	1.87	" "	$1{ }^{\circ} 98$	" 0	1.03	" \quad "	179
	1.08	4	2.07	" "	2.97		3-39
May 1	2.11		2.42	"	1.42	" 10	$2.9+$
" '3	1.98 $+\quad .95$	" 5	2.53	"	2057 +3.55	" "	+1.61
" 3	+2.35	"	+2.95	" 8	+3'5.5		

Steel Bar. 1st Series.

Date.	E.	Date.		E.	Date.	\%.	13ate.	E.
3865.		1865.			1865.		1865.	
Feb. 17	$+0.16$	Feb.	25	$+2.42$	March 4	$+2.57$	March 9	$+3+3$
, 18	0.60			1.87	6	3.66	" "	$1 \cdot 83$
" ${ }^{\prime \prime}$	- 39	"	27	1.70	" "	$2 \cdot 39$	" "	$2 \cdot 22$
" 20	$3 \cdot 35$	"		2.67	" "	+'01	" 10	3.92
	2.89	"	28	$1 \cdot 67$	" "	2.73	" "	$3 \cdot 3$
$\cdots \quad 21$	2.26	"	,	0.74	$\ddot{7}$	175	" "	$2 \cdot 78$
" "	0.85		$\ddot{\square}$	1.4.'	7	2.63	" 11	2.91
$\cdots{ }^{\prime \prime}$	$2 \cdot 81$	March	3	1.74	" "	$1 \cdot 28$	" ,	0.83
., 29	$3 \cdot 15$		"	2.59	" "	2.64	" ",	1.67
, 24	$2 \cdot 09$	"	4	$1 \cdot 74$	"	$2 \cdot 81$	" "	$2 \cdot 38$
	$1 \cdot 12$		"	1.82	8	2.22		$+1 \cdot 37$
25	2.09	"	"	1.80	"	$3 \cdot 88$		
"	+0.92	"		$+1.65$	"	+293		

Steel. Bar. 2nd Series.

Date.	E.	Date.	E.	Date.	E.	Date.	E.
1865. April 29 $"$ $"$ $"$ $"$ May $"$ $"$ $"$ $"$ 3	+ 0.60 1.09 1.39 0.68 0.90 1905 +1.98		1.71 +1.7 1.50 2.93 1.51 1.22 2.61 +2.55		+2.43 2.06 2.37 1.97 1.61 2.29 +3.33	$\begin{array}{cc} \text { 1865. } \\ \text { May } & 9 \\ " & " \\ ", & " \\ ", & 10 \\ " & " \end{array}$	+2.66 2.67 2.55 3.27 1.04 +2.53
Ol_{1}							
Date.	E.	Date.	£.	Date.	E.	Date.	E.
$\begin{array}{cc}\text { 1865. } \\ \text { Nov. } & 3 \\ " & 3 \\ " & " \\ " & " \\ " & 4 \\ " & " \\ " & " \\ " & 6 \\ " & 7\end{array}$	+1.13 +2.15 +0.97 +0.71 +1.46 +2.03 +0.81 +1.21 +0.82 -0.13	$1865 .$ Nov. 7 1) $\ddot{8}$? \qquad	+2.45 0.52 0.16 0.78 0.98 1.71 2.27 0.82 0.89 +2.09	$\begin{array}{cc} c \mid c \\ \text { 1865. } \\ \text { Nov. } & 10 \\ " & " \\ " & " \\ " & 13 \\ " & 1 " \\ " & 14 \\ " & ", \\ " & " \\ " & " \end{array}$	+1.33 0.35 0.81 0.32 1.36 0.18 0.42 0.41 0.26 +3.59	$1865 .$ Nov, 15	+0.99 -0.08 +0.59 +0.24 +0.76 +1.16 +0.16 -0.73

Ol_{8}

Date.	E.	Dute.	E.	Dake.	E.	Date.	E.
1865.		1865.		1865.		1865.	
Nov. 3	+1.09	Nov. 7	$+2.03$	Nov. 10	+1.88	Nov. 15	$+0.64$
"	1.27	" ' ${ }^{\text {B }}$	174	" "	-0.33	" ${ }^{\text {e }}$	+0.33
" "	1.80		0.92	"	+2.4	" \quad,	+0\%
" "	0.82		0.62		+0.48	" "	+1.12
$\cdots \quad 4$	2.65	, "	$1 \cdot 63$	" 13	+0.80	, 16	+ 1.86
" \quad "	2.39	9	1.79		+1.12	"	+1.20
	0.82		0.61	" 14	+0.86	"	+1.3
" 0	3.55	" "	0.79	" \quad	-0.65	" "	-0.08
	$2 \cdot 72$	" "	$1 \cdot 12$,'	$+1.15$		
" 7	+106	" $\quad 3$	+ 1 * $9+$	" ',	$+1.27$		

From these tables it appears that the value of E is positive in every instance in the case of the Indian Bars. In the case of either of the Iron Bars there are three negative values agaiust 35 positive values. In the second series of experiments on either of the Indian Bars the values are rather smaller than in the first series. The mean results are-

Bronze	$e_{a}-e_{a}+e_{b}-e_{\beta}=2.34$
Steel	$e_{a}-e_{a}+e_{b}-e_{B}=2 \cdot 10$
Ol_{1}	$e_{a}-e_{a}+e_{b}-e_{\beta}=0.95$
Ol_{2}	$e_{a}-e_{a}+e_{b}-e_{\text {日 }}=1.28$

Here two facts present themselves at once,-(1) the amount of personal error exhibited in the case of the Indian Bars is twice as great as in the others; (2) the error is the same in sign for all four bars. These might be accounted for on the hypothesis that the "bisection" of the observer A was always to the right of the bisection by the observer Bwhile the actual amount of difference varies with different lines. If we further suppose that each of the two lines on a bar produce the same amount of personal error, then since the micrometers measure in opposite directions, $e_{a}=-e_{a}, e_{\beta}=-e_{b}$, and in the case of the four bars we have the results-

$$
\begin{array}{ll}
e_{b}-e_{a}=\mathrm{I} .17 & e_{b}-e_{a}=0.48 \\
e_{b}-e_{a}=1.05 & e_{b}-e_{a}=0.64
\end{array}
$$

If we further suppose the two observers to have equal personal errors in opposite directions, then in the four different bars-

$$
\begin{array}{ll}
e_{a}=-e_{b}=-0.58 & e_{a}=-e_{b}=-0.24 \\
e_{a}=-e_{b}=-0.5^{2} & e_{a}=-e_{b}=-0.32
\end{array}
$$

And indeed if we examine the observations as recorded, it will be seen that in almost every instance the H readings of the first observer are less, and his K readings greuter, than those of the second observer. Where this does not hold it is legitimate to suppose that the bar has been shaken or adjusted between the two observations.

In order to examine further into the matter, some special observations were made on ${ }^{\circ} \mathrm{OI}_{1}$ and OI_{2} with the microscopes interchanged. 'The. readings were made in the same manner as in the expansion experiments. Each number in the followivg tables is the mean of four readings, and the six lines in cach group correspond to one visit to the burs.
Ol_{1}

Date.	Cuptuin Clarke, M.E.	Quarterwaster Steel.	E.	Remarks.
1865.				
Nov. 28	$4.05 k+6.22 h$	$4 \cdot 12 k+5 \cdot 40 h$	+0.71	K left, H right.
", "	$3.82 k+6.60 h$	$4.17 k+6.27 k$	+0.54	
"	$3 \cdot 72 k+6 \cdot 50 h$	$2 \cdot 90 k+6 \cdot 42 h$	-0.59	
"	$3 \cdot 00 k+7 \cdot 10 k$	$2 \cdot 45 k+7 \cdot 15 k$	-0.48	
"	$2 \cdot 75 h+7.75 h$	$2 \cdot 92 k+7.65 h$	+0.21	
"	$2.45 k+7.65 h$	1.62 $k+7.55 k$	-0.58	
" "	$6.45 k+\mathrm{I} .60 h$	$6 \cdot 15 k+1.22 k$	+0.06	" "
" "	$6.62 k+\mathrm{r} .68 h$	$6 \cdot 37 h+1.00 h$	+0.34	
" "	$6.08 k+1.35 k$	$5 \cdot 77 k+1.40 k$	-0.29	
" "	$5.52 k+1.80 h$	$5 \cdot 15 k+1 \cdot 48 k$	-0.04	
"	$5 \cdot 70 k+1.72 h$	$5 \cdot 02 k+1.78 k$	-0.59	
" "	$5.65 k+\mathrm{t} .88 /$	$5 \cdot 55^{k}+1 \cdot 40 h$	$+0.30$	
29	$9 \cdot 32 h+8 \cdot 18 k$	$8.85 h+8.00 k$	-0.23	H left, K right.
" "	$9 \cdot 40 h+7.92 k$	$8.77 h+8.05 h$	-0.60	
" "	$9 \cdot 22 h+7.88 h$	$8 \cdot 52 h+7 \cdot 57 k$	-0.31	
" "	$8.82 h+8.02 k$	$8.05 h+7.72 k$	-0.37	
" "	$9 \cdot 00 h+8 \cdot 32 k$	$8 \cdot 50 h+7 \cdot 97 k$	-0.12	
" "	$8.62 h+8.28 k$	$8.25 k+8.17 k$	-0.21	
30	$2.02 h+4.32 h$	$2.75 h+3.07 h$	+1.58	" "
" "	$2.05 h+4.55 h$	$1.62 h+3.50 k$	+0.49	
" "	$2.02 h+4.80 k$	${ }^{1} \cdot 77 h+3.95 h$	+0.48	
" "	$2.05 h+5.62 h$	$1 \cdot 30 h+4 \cdot 72 k$	+0.12	
" "	$2 \cdot 08 h+5.50 k$	$1 \cdot 55{ }^{\prime}+4.40 k$	+0.45	
" "	$1 \cdot 78 h+5 \cdot 75^{k}$	$1 \cdot 47 k+4 \cdot 42 k$	$+0.81$	
Ol_{2}				
Nov. 30	$6.08 h+9.18 k$	$6.80 h+7.70 k$	+1.75	H left, K right.
, "	$5.62 h+10.02 k$	$6.02 k+7.80 k$	+2.09	
" "	$5 \cdot 68 h+9.30 k$	$5 \cdot 90 h+8.30 k$	+0.97	
" "	$5 \cdot 10 h+9.75 k$	$5 \cdot 85 h+8.40 h$	$+\mathrm{I} .67$	
" "	$5 \cdot 55 h+9.75{ }^{h}$	$6.02 h+8.37 h$	+1.47	
" "	$5 \cdot 02 h+9.52 k$	$5 \cdot 30 h+8 \cdot 50 k$	+1.04	
Dec. 1	$4 \cdot 40 h+5.60 h$	$3 \cdot 70 h+4.85 k$	+0.04	" "
" "	$4 \cdot 40 h+5.85 k$	$3.67 h+5.00 k$	+0.10	
" "	$4 \cdot 28 h+5 \cdot 92 k$	$4 \cdot 72 h+4 \cdot 87 h$	+ 1.19	
, "	$3 \cdot 48 h+6 \cdot 10 k$	$3.75 h+5.27 h$	+0.87 +0.77	
" "	$3 \cdot 75 h+6 \cdot 25 h$ $3 \cdot 60 h+6 \cdot 10 k$	$4.07 h+5.60 h$ $3.30 h+5.07 h$	+0.77 +0.58	
"	$3.60 h+6.10 k$	$3 \cdot 30 h+5.07 h$	+0.58	
" "	$0.78 h+6.80 h$ $0.75 k+6.52 h$	$1.80 k+5.00 k$	+2.25	K left, H right.
", "	$0.75 k+6.52 h$ $0.50 h+6.68 h$	$1 \cdot 52 k+5 \cdot 25 h$	+1.62	
"	$0.50 h+6.68 h$ $0.98 k+6.90 h$	$0.60 k+5.17 h$ $0.32 k+4.82 h$	+1.28 +1.13	
" "	$0.98 k+6.98 k$ $0.78 k+6.58 h$	$0.32 k+5.82 h$ $0.42 k+4.87 h$	+1.8 +1.08 +1.08	
" "	$0.68 k+6.60 k$	$0.95 k+5.05 h$	+ I. 45	
2	7.58k+8.12h	$7 \cdot 78 h+6.45 h$	+1.49	"
" "	$7 \cdot 55 h+8 \cdot 00 h$	$8.25 k+7.07 h$	+ 1.30	
" "	$7.83 h+8 \cdot 20 h$	$7.80 k+6.75 h$	+1.13	
"	$7 \cdot 55 h+8 \cdot 12 h$	$8.62 k+6.57$ h	+2.09	
"	$7.52 h+8 \cdot 30 h$	$6.75 k+6.78 h$	+0.60	
, "	$8 \cdot 10 h+8.42 h$	$7.72 k+6.67 k$	+1.09	

In the first of these tables, column headed E, there are as many positive as negative signs, and the average of the values of \mathbf{E} is +0.07 . The result is not materially different whether H be to the left and K to the right, or vice versá. This value is sensibly different from that obtained from the expansion experiments.

In the second Table containing the readings of $\mathrm{OI}_{\mathbf{g}}$ it appears that E is in every case positive. The mean of the first 12 valucs, when H is on the left and K on the right, is +1.05 ; and of the second 12 , when H is on the right and K on the left, the mean is $+1 \cdot 38$. In these experiments the bar may safely be assumed to have remained absolutely unmoved during the readings of each visit (or group of six lines), so that we can get the difference of readings of the two observers for each line; taking the means in 12 lines each, we get-

Cujtain Clarkc.	Quartermaster steel.	Position of Sicrometer.
$\begin{aligned} & 4.75 h+7.78 h \\ & 4.22 k+7.44 h \end{aligned}$	$\begin{aligned} & 4.93 h+6.6+k \\ & 4.3^{8} k+5.87 h \end{aligned}$	H on the left, K right. K on the left, H right.

Where each number is the mean of 48 readings. Here the difference of the personal equations of the two observers is-

Len Line.	Right Liue.	Position of Micrometer.
$+0.18 h$	$-1.1+h$	H on the left, K right,
$+0.16 h$	$-1.57 h$	K on the left, H right.

Thus it appears that the discrepancy arises almost entirely from the manner of bisecting one-the right-line. The mean value of E from all these observations on OI_{2} $=+_{I} \cdot 2$ I which agrees with the value derived from the expansion experiments.

But in the case of Ol_{1} we have found a different value. This leads us to conclude that a line may be read or bisected differently at one time from another. That is to say, the line may have a different appearance to one or both observers at different times. This may be the case actually, owing to very minute particles of dust hanging about the edges of the line, which are not easily dislodged. It is impossible to protect at all times the polished surfaces from dust, nor ought they to be cleaned oftener than is absolutely necessary.

The lines on the Indian Bars, which bring out the greatest amount of personal error, are fine and some of them rather faint; the lines ou $\mathrm{Ol}_{1} \mathrm{Ol}_{2}$ are dark and strong, but they have straight parallel edges. The parallelism of their edges is certainly of more importance that the fineness of the lines. In the platinum metre, for instance, the lines are excessively fine, but they have no sharp parallel edges, and consequently are most unfavourable for observation.

XVIII.

DETERMINATION OF THE LENGTH OF THE INDIAN STANDARD

$\|_{S}$
${ }^{4}$ The Indian Standard Bar \mathbf{I}_{S} has seven points on its upper surface distributed as shown in the diagram of OI_{1}, page 81. They are marked with the distinctive letters a в с D еf f , thus

The comparisons made were the following :-

The observations are recorded in the usual form in the following Tables:-
Comparisons of the difperent Spaces on the Steel Bar mith one another, and with the Standard Yard \mathbf{Y}_{55}.

Date.	$[\mathrm{A} \cdot \mathrm{B}]$	[$\mathrm{B} \cdot \mathrm{E}$]	Difference of Lengh in Micrometer Divisions.	$[\mathrm{A} \cdot \mathrm{B}]-[\mathrm{B} \cdot \mathrm{E}]$
1865.				
May 25	$16.93 h+27.58 h$	$44 \cdot 28 h+44 \cdot 63 h$	$27.35 h+17.05 h$	$35 \cdot 38$
	$22 \cdot 28 h+21.57 k$	$43.23 h+43.63 k$	$20.95 h+22.06 k$	$34 \cdot 29$
	$18.43 h+25.30 k$	$39 \cdot 78 h+47 \cdot 25 h$	$21.35 h+21.95 k$	34.52
" "	$19.63 h+22.91 k$	$29 \cdot 10 h+57 \cdot 25 k$	${ }^{9} \cdot 47 h+34 \cdot 34 k$	- $34 \cdot 96$
" "	$23.65 h+18.33 k$ $21.68 h+16.73 h$	$45.00 h+40 \cdot 28 h$ $42.03 h+42.98 k$	$21.35 h+21.95 k$ $20.35 h+23.25 k$	$34 \cdot 52$ $34 \cdot 76$
" "	$21.68 h+15.73 h$ $23.65 h+16.23 k$	$42.03 h+42.98 h$ $45.22 h+37.07 h$	$20 \cdot 35 h+23 \cdot 25 k$ $21.57 h+20.84 k$	34.76 3.81
" "	$23.65 h+16.23 k$	$45 \cdot 22 h+37 \cdot 07 h$	$21.57 h+20.84 k$	33.81
" ${ }^{\prime \prime} 6$	$24.00 h+15.87 k$	$37 \cdot 52 h+46 \cdot 22 h$	$13.52 h+30.35 k$	35.00
" 26	$21.63 k+26.60 k$	$49 \cdot 57 h+41 \cdot 55 k$	$27.94 h+14.95 k$	$34 \cdot 17$
" "	$24 \cdot 88 h+24.03 h$	$54 \cdot 00 h+37 \cdot 80 h$	29.12h+13.77	$34 \cdot 17$

Date.	[$\mathrm{H} \cdot \mathrm{E}$]	$[C \cdot F]$	Difference of Iength in Micrometer Disisions.	[$\mathbf{C} \cdot \mathbf{F}]-[\mathbf{B} \cdot \mathbf{E}]$
1865.				
May 20	32.43 $h+30.08 k$	$35 \cdot 18 h+22 \cdot 70 h$	$-2.75 h+7.38 h$	3.71
22	$23 \cdot 10 h+31.58 k$	$24.50 h+24.90 k$	- $1.40 k+6.68 k$	$4 \cdot 22$
" "	$29.42 h+26.03 h$	$29.20 h+21.68 h$	+ $0.22 k+4.35^{h}$	3.65
" "	$26 \cdot 55 h+28 \cdot 57 k$	$24 \cdot 18 h+26 \cdot 48 h$	+ $2.37 h+2.09 k$	$3 \cdot 55$
" "	$25.84 h+28.85 k$	$28.07 h+21.57 k$	- $2.23 h+7.18 h$	$3 \cdot 96$
" ,	$25 \cdot 85 h+28 \cdot 70 k$	$22.93 h+25.95 k$	+ $2.92 k+2.75 k$	$4 \cdot 52$
" "	$28.08 h+23.77 k$	$23.20 h+23.28 h$	$+4.88 h+0.49 h$	$4 \cdot 27$
" "	$26.73 h+24.57 h$	$26.18 h+20.32 k$	+ $0.55 h+4.25 h$	3.83
" ,	$20.73 h+25.95 k$	$22.95{ }^{h}+21.53 k$	- $2.22 h+4.42 h$	1.76
23	$20.47 h+27.57 k$	$20.32 h+24.73 h$	+ $0.15 h+2.84 k$	$2 \cdot 39$
23	$29 \cdot 72 h+20 \cdot 76 h$	$29.90 h+14.82 h$	$-0.18 k+5.94 k$	4.60
" "	$25 \cdot 21 h+25.56 h$	$23.76 h+2 \mathrm{I} \cdot 86 k$	$+1 \cdot 45 h+3.70 k$	$4 \cdot 11$
" "	$29.07 h+27.32 h$	$28.83 h+24.72 k$	$+0.2+h+2.60 k$	$2 \cdot 27$
" "	$29.88 h+26.85 h$	$27 \cdot 10 h+26 \cdot 20 k$	$+2.78 h+0.65 h$	$2 \cdot 73$
"	$28.90 h+27.91 k$	$26.45 k+26 \cdot 38 k$	+ $2.45 h+1.53 k$	3. 17
" "	$24.63 / 2+29.10 k$	$23.85 h+27.23 k$	+0.78h $+1.87 k$	$2 \cdot 11$
" "	$24.93 h+27.55 h$	$23.87 h+25.89 k$	+ $1.06 h+1.66 h$	$2 \cdot 17$
" "	$26.78{ }^{8} h+25 \cdot 40 k$	$23 \cdot 82 h+24 \cdot 45 h$	$+2.96 h+0.95 k$	$3 \cdot 1 \mathrm{I}$
"	-26.98h $+23.23 h$	$25.25 h+20 \cdot 30 k$	$+1.73 h+2.93 k$	$3 \cdot 72$
,	$27.70 h+23.03{ }^{k}$	$24.63 h+22 \cdot 18 k$	$+3.07 h+0.85 k$	$3 \cdot 12$

Date.	[$\mathrm{C} \cdot \mathrm{r}$]	[$\mathrm{F} \cdot \mathrm{H}$]	Difference of Length in Microneter Dirisions.	[$\mathbf{F} \cdot \mathbf{H}]-[C \cdot \mathrm{~F}]$
1865.				
May 26	$60.83 h+59.33 h$	$29.23 h+18.63 k$	$31.60 h+40 \cdot 50 h$	57.65
, ,	$62 \cdot 7^{8} h+5^{8 \cdot 10} k$	$24.52 h+24 \cdot 40 k$	$38 \cdot 26 h+33 \cdot 70 h$	$57 \cdot 36$
" "	$60 \cdot 55 h+59 \cdot 58 h$	$24.42 h+24.47 h$	$36 \cdot 13 h+34 \cdot 712$	56.47
"	$60.87 h+60.13 k$	$23.63 h+23.85 h$	$37 \cdot 24 h+36 \cdot 28 k$	58.61
27	$59 \cdot 27 h+62 \cdot 98 k$	$24.80 h+25.5 \mathrm{I} k$	$34 \cdot 47 h+37 \cdot 47 k$	57.35
" "	$58.60 h+63.47 k$	$24 \cdot 48 h+25 \cdot 12 h$	$34 \cdot 12 h+3^{8 \cdot 35} k$	57.78
" "	$62.01 h+58.15 k$ $58.15 h+6.18 k$	$23 \cdot 51 h+24 \cdot 90 h$ $25.43 h+23.45 h$	$38 \cdot 50 h+33 \cdot 25 k$ $32.68 h+37.73 k$	57.19 56.14
", "	$58 \cdot 11 h+61 \cdot 18 h$ $62 \cdot 43 h+55.93 h$	$2.5 \cdot 43 h+23 \cdot+5 h$ $28 \cdot 15 h+10 \cdot 95 h$	$32.68 h+37.73 k$ $34.28 h+35.08 h$. 56.14 $56 \cdot 01$
", "	$62.43 h+55.93 h$ $66.25 h+52.05 h$	$28 \cdot 15 h+19 \cdot 95 h$ $28.48 h+10 \cdot 12 k$	$34 \cdot 28 h+35 \cdot 98 h$ $37.77 h+32.93 k$	56.01
"	$66 \cdot 25 h+52.05 k$	$28.48 h+19.12 k$	$37 \cdot 77 h+32 \cdot 93 k$	56.39

Date,	[B.D]	[$\mathrm{C} \cdot \mathrm{E}$]	Difference of Length in Micrometer Divisions.	$[\mathbf{C} \cdot \mathbf{E}] \div[\mathrm{B} \cdot \mathrm{D}]$
1865.				
July 1	$77 \cdot 40 h+8 \mathrm{I} \cdot 33 k$	$56.63 h+59.52 k$	$20.77 h+21.81 k$	$33 \cdot 95$
	$80.83 h+76 \cdot 57 k$	$55 \cdot 95 h+61 \cdot 112$	$24.88 h+15.46 h$	$32 \cdot 14$
	$79.47 h+80.83 k$	$64.03 h+55 \cdot 10 k$	$15 \cdot 44 h+25 \cdot 73 k$	32.84
	$79 \cdot 85 h+77 \cdot 98 k$	$57.97 h+60 \cdot 10 k$	$21.88 h+17.88 k$	31.69
	$79 \cdot 70 h+78 \cdot 47 k$	$54 \cdot 10 h+62.83 k$	$25.60 h+15.64 k$	32.86
	$79 \cdot 62 h+82 \cdot 98 h$	$67 \cdot 32 h+53.68 h$	$12.30 h+29.30 k$	$33 \cdot 19$
	$78 \cdot 70 h+86 \cdot 25 h$	$63 \cdot 37 h+61 \cdot 20 k$	$15.33 k+25.05 k$	$32 \cdot 20$
"	$80.70 h+82.37 h$	$64 \cdot 32 h+58 \cdot 12 k$	$16 \cdot 38 h+24.25 k$	32.40
	$84.30 h+78.52 h$	$61 \cdot 15 h+61 \cdot 38 k$	$23 \cdot 15 h+17 \cdot 14 k$	$32 \cdot 11$
" "	$77.03 h+83.92 h$	$62 \cdot 23 h+59 \cdot 35 k$	$14 \cdot 80 h+2+57 k$	31.40

Date.	[$\mathrm{B} \cdot \mathrm{D}$]	[D.F]	Difference of Length in Micrometer Divisions,	$[\mathrm{D} \cdot \mathrm{F}]-[\mathrm{B} \cdot \mathrm{D}]$
1865.				
May 27	$48 \cdot 78 h+41 \cdot 3^{8} h$	$22.60 h+26.67 k$	$26 \cdot 18 h+14 \cdot 71 k$	$32 \cdot 58$
	$46.65 h+42.97 h$	$28.27 h+21.60 k$	$18 \cdot 38 h+21.37 k$	31.69
" "	$45 \cdot 53 h+43 \cdot 48 k$	$17.30 k+31.03 k$	$28.23 h+12.45 k$	$32 \cdot 41$
" \quad	$49.27 h+40.61 k$	$21.27 h+27.35 k$	$28.00 h+13.26 k$	32.87
" "	$45.70 h+42.05 k$	$22.40 h+25.30 k$	$23.30 h+16.75 k$	31.92
	$40 \cdot 55 h+46 \cdot 57 h$	$23.15 k+24 \cdot 88 k$	$17.40 h+21.69 k$	$31 \cdot 17$
" 29	$43.82 h+45.80 h$	$25.30 h+23.85 k$	${ }^{18 \cdot 52} k+21.95 k$	$32 \cdot 27$
" ${ }^{\prime}$	$45 \cdot 53 h+44 \cdot 58 k$	$28.98 k+20.47 k$	$16.55 h+24.114$	$32 \cdot 43$
" "	$47 \cdot 42 h+42 \cdot 20 k$	$21.80 h+27 \cdot 28 k$	$25.62 h+14.92 k$	$32 \cdot 30$
"	$46 \cdot 78 h+42 \cdot 52 k$	25.23h+24.17k	$21.49 k+18.35 k$	$31 \cdot 76$

Date,	[D.F]	[C•E]	Difference of Length in Micrometer Divisions.	$[\mathrm{C} \cdot \mathrm{E}]-[\mathrm{D} \cdot \mathrm{F}]$
${ }_{\text {July }}^{1865 .}$	$62.68 h+55.58 k$	$64 \cdot 10 h+51 \cdot 95 k$	$-1.42 h+3.63 k$	
	$61.27 h+57.08 k$	$60 \cdot 15 h+57 \cdot 13 k$	$-1.42 h-3.05 k$	0.85
	$63.78 h+55.05 k$	$58.85 h+59.22 k$	$4.93 h-4.17 k$	0.59
" "	$59 \cdot 45 h+58 \cdot 78 k$	$60 \cdot 15 h+57 \cdot 73 k$	$-0.70 h+1.05 k$	0.28
"	$62 \cdot 57 h+55 \cdot 02 k$	$60.85 k+56 \cdot 13 k$	1.72h-1.11 k	$0 \cdot 48$
" "	$68.92 h+53.17 k$	$72 \cdot 35 h+48.80 k$	$-3.43 h+4.37 h$	0.76
$\Rightarrow \quad 3$	$64 \cdot 00 h+60.67 k$	$65.47 h+58.00 h$	$-1.47 h+2.67 h$	-.96
"	$62 \cdot 13{ }^{\prime} h+61 \cdot 5^{8} k$	$65 \cdot 57 h+55 \cdot 55 h$	$-3.44 h+6.03 k$	2.08
" "	$69 \cdot 98 h+54 \cdot 33^{k}$	$71 \cdot 48 k+52 \cdot 07 k$	$-1.50 h+2.26 \%$	0.61
" "	$58 \cdot 88 h+63 \cdot 18 k$	$59 \cdot 78 h+61 \cdot 47 k$	$-0.90 h+1.71 \%$	0.65

Date,	[$\mathrm{B} \cdot \mathrm{C}$]	[$\mathrm{C} \cdot \mathrm{D}$]	Difference of Lenglh in Micrometer Divisions.	$[\mathrm{C} \cdot \mathrm{D}]$ - [B.c]
1865.				
May 29	$47 \cdot 78 h+44.75 k$	$45 \cdot 08 k+4 \mathrm{I} \cdot 92 k$	$2 \cdot 70 h+2.83 h$	$4 \cdot 41$
» \quad	$45 \cdot 71 h+47 \cdot 20 h$	$45.08 h+41.38 h$	$0.63 h+5.82 h$	$5 \cdot 15$
" "	$45 \cdot 15 h+44 \cdot 28 k$	$41 \cdot 43 h+44 \cdot 4 \mathrm{I} h$	$3.72 h-0.13 h$	2.86
" "	$44 \cdot 28 h+45 \cdot 88 k$	$43 \cdot 10 h+43 \cdot 65 h$	$1.18 h+2.23 h$	2.72
	$42 \cdot 62 h+49 \cdot 95 k$	$39 \cdot 05 h+47 \cdot 78 h$	$3 \cdot 57 h+2 \cdot 17 h$	$4 \cdot 57$
"	$43 \cdot 30 h+49.32 k$	$41 \cdot 13 h+47 \cdot 06 k$	$2.17 h+2.26 h$	$3 \cdot 53$
	$43 \cdot 98 h+48 \cdot 25 k$ $45 \cdot 53 h+46 \cdot 22 k$	$45 \cdot 53 h+41 \cdot 52 h$ $43.72 h+42.78 h$	$-\mathrm{I} .55 h+6.73 k$ $1.8 \mathrm{I} h+3.44 k$	4.14 4.19
" "	$45 \cdot 53 h+46 \cdot 22 k$ $46 \cdot 55 h+44 \cdot 57 k$	$43 \cdot 72 h+42 \cdot 78 h$ $47 \cdot 72 h+38 \cdot 12 h$	$1.8 \mathrm{I} h+3.44 k$ $-1.17 h+6.45 k$	4.19 4.22
" \quad "	$46 \cdot 55 h+44.57 h$ $46 \cdot 52 h+44.65 k$	$47 \cdot 72 h+38 \cdot 12 h$ $46 \cdot 28 h+39 \cdot 50 h$	$-1.17 h+6.45 k$ $0.24 h+5.15 k$	4.22 4.30

Date.	[D.E]	[$\mathbf{E} \cdot \mathrm{F}$]	Difference of Length in Dicrometer Divisiona	$[\mathrm{D} \cdot \mathrm{E}]$ - [E•F]
1265.				
May 30	$26.88 h+21.67 h$	$44.77 h+43.63 h$	$17.59 h+21.96 k$	31.54
	$24.25 h+21.85 h$	$45.07 h+41.63 k$	$20.82 h+19.78 k$	$32 \cdot 36$
,	$23 \cdot 33 h+24.55 k$	$37.93 h+50 \cdot 42 k$	$14.60 h+25.87 k$	$32 \cdot 26$
"	$21.22 h+26.72 k$	$4+77 h+42 \cdot 82 h$	$23.55 h+16 \cdot 10 h$	31.60
"	$21.75 h+26.80 k$	$43 \cdot 51 / 2+43 \cdot{ }^{2} k$	$21.75 h+16.62 k$	$30 \cdot 59$
"	$24.65 h+23.40 k$	$40.40 h+45.23 k$	$15.75 h+21.83 h$	29.97
"	$24.42 h+23.95 k$	$35 \cdot 43 k+50 \cdot 53 k$		29.99
; "	$23.72 h+26 \cdot 00 h$	$43.48 h+43.73 k$	$19.76 h+17.73 k$	29.8 R
"	$25.83 h+22.50 h$	$43.45 h+41.80 k$	$17.62 h+19.30 k$	29.43
	$25.93 h+22.30 k$	$3^{8.68} k+47.07 k$	$12 \cdot 7.5 h+24.77 h$	$29 \cdot 9^{3}$

Date.	Temp.	[$\mathrm{A} \cdot \mathrm{B}$]	$\mathbf{Y}_{5 s}$	Difference of reagth in Micrometer Divisions.	$[\mathbf{A} \cdot \mathrm{B}]-\mathbf{Y}_{s s}$
1865.					
June 22	62.48	$82.52 h+81.65 k$	$97.63 h+102.77 h$	$15 \cdot 11 h+21 \cdot 12 k$	28.89
" "		$73 \cdot 33 h+89.85 k$	$88.32 h+111.63 k$	$14.992+21.78 k$	29.3:
" "	62.74	$79.70 h+82.23 h$	$97.42 h+101.45 h$	$17.72 h+19.22 k$	$29 \cdot 45$
	62.82	$7^{8 \cdot} \cdot 43 h+83 \cdot 5^{8} h$	$100.53 h+96.87 h$	$22 \cdot 10 h+13.29 k$	28.20
" 23	62.83	$86.80 h+76.32 k$	$100.03 h+98.93 h$	$13.23 h+22.61 k$	28.58
" "	62.87	$85.82 h+76 \cdot 30 k$	$96.83 h+101.08 k$	$11.01 h+2+78 h$	28.55
"	63.06 6.15	$74.88 h+86.57 k$ $83.45 h+77.57$	$92.75 h+10.32 h$ $96.30 h+10.07 h$	$17.87 h+18.75 h$ $12.85 h+2.50 h$	29.19
"	63.15	$83.45 h+77.57 k$ $77.47 h+81.77 h$	$96 \cdot 30 h+101.07 k$	$12.85 h+23.50 h$ $20.80 h+15.95$	28.99
"	63.27	$77.47 h+8{ }^{1.77 h}$ $77.78 h+81.05 h$	$98.27 h+97.72 h$ $98.57 h+96.95 h$	$20.80 h+15.95 h$ $20.70 h+15.90 k$	29.2y
" "	63.33	$77 \cdot 78 h+81 \cdot 05 k$	98.57h + 96.95h	$20.79 h+15.90 h$	$29.2+$

Date.	Temp.	[B.E]	$\mathbf{Y}_{5 s}$	Difference of Length in Micrometer Divisions.	$\mathbf{Y}_{5 S}-[\mathbf{B} \cdot \mathrm{E}]$
1865.					
April 8	$47 \cdot 33$	$25.68 h+28.83 k$	$2+88 h+28.28 k$	$0.80 h+0.55 h$. 08
",	$47 \cdot 27$	$17.00 h+36 \cdot 45 h$	$16.80 h+39.52 h$	0.20h-2.67 k	-1.97
",	$47 \cdot 33$	$23.65 h+28.72 h$	$22 \cdot+8 h+29.62 h$	1.17h-0.90k	0.21
\cdots	47.35	$27.57 h+25.28 h$	$30.82 h+21.52 h$	$-3.25 h+3.76 h$	0.42
10	47.85	$23 \cdot 42 h+27.45 h$	$2{ }^{2} \cdot 85 h+25.68 k$	$-1.43 h+1.77 k$	0.28
\% "	48.03	$24.25 h+19.98 k$	$26.00 h+17.22 k$	$-1.75 h+2.76 h$	0.81
" "	$48 \cdot 25$	$22.48 h+20.65 h$	$22 \cdot 32 h+20.07 h$	$0.16 h+0.58 k$	0.59
	48.40	$26.18 h+13.32 h$	$23.92 h+1.468 k$	$2 \cdot 26 h-1.36 k$	0.71
11	48.88	$21.03 h+16.90 h$	$20.65 h+16.83 k$	$0.38 h+0.07 h$	$0 \cdot 36$
	49.09	$15.12 k+22.87 k$	$15 \cdot 57 h+21 \cdot 3^{8} k$	$-0.45 h+1.49 k$	0.83
June	61.04	$29.83 h+35.70 h$	$28 \cdot 22 h+31 \cdot 37 k$	${ }_{1} .6 \mathrm{I} h+4.33 h$	+7+
" "	61.17	$29.00 h+36 \cdot 50 h$	$28.22 h+30.72 h$	$0.78 h+5.78 h$	$5 \cdot 2+$
	61.23	$32 \cdot 30 h+37 \cdot 38 k$	$34.02 h+29.55 h$	$-1.72 h+7.83 h$	4.88
2	60.83	$39.83 h+30 \cdot 80 k$	$30.70 h+34.02 k$	$9.13 h-3.22 h$	4.69
" \#	60.79	$35 \cdot 77 h+35 \cdot 23 h$	$35.53 h+29.22 h$	$0.24 h+6.01 k$	4.99
" "	60.76	$36.43 h+37 \cdot 40 k$	$37 \cdot 38 h+29 \cdot 27 k$	$-0.95 h+8.13^{k}$	$5 \cdot 7+$
" "	60.75	$32.62 h+34.05 h$	$32.88 h+27.33 k$	$-0.26 h+6.72 k$	5.16
	60.72	$35.05 h+32.30 h$	$34.87 h+26.75 k$	$0 \cdot 18 h+5.55 h$	4.57
3	59.85	$39.93 h+31 \cdot 40 k$	$38.60 h+26.73{ }^{k}$	1.33k $+4.67 k$	4.79
" "	59.8 I	$38 \cdot 10 h+33 \cdot 60 k$	$38.80 h+27.92 k$	$-0.70 k+5.68 k$	3.98

Date.	Temp.	[$\mathbf{B} \cdot \mathrm{E}$]	$\mathbf{Y}_{5 s}$	Difference of Length in Mierometer Divisions.	$\mathbf{Y}_{55}-[\mathrm{B} \cdot \mathrm{E}]$
${ }_{\text {June }} 186$.					
June 27	63.80	$55.22 h+58.83 k$	$55.63 h+51.05 k$	$-0.41 h+7.78 k$	$5 \cdot 89$
," ,	63.79	$55.67 h+58.67 k$	$51.67 h+55.67 h$	$4.00 h+3.00 k$	$5 \cdot 58$
" ,	63.77	$49.92 h+64 \cdot 98 k$	$53.03 h+55.95 k$	$-3.112 h+9.03 k$	4.74
" "	63.78	$56 \cdot 72 h+57 \cdot 35^{k}$	$52.60 h+54.92 k$	$4.12 h+2.43 h$	5.22
\%	63.78	$55 \cdot 68 h+60 \cdot 33 k$	$54.23 k+53 \cdot 60 k$	$1.45 h+6.73 k$	$6 \cdot 53$
28	63.50	$55.25 h+60.65 k$	$54.23 h+53.92 k$	$1.02 h+6.73 k$	6.19
", "	63.49 63.47	$6 \mathrm{I} \cdot 27 h+53.92 k$ $57.65 h+58.23 k$	$54.23 h+54.45 k$ $55.43 h+55.70 k$	$7.04 h-0.53 h$	5.18
29	$63 \cdot 47$ 63.30	$57.65 h+58.23 k$ $62.97 h+56.97 k$	$55 \cdot 43 h+53 \cdot 70 k$ $54.68 h+57.93 k$	$2.22 k+4.53 k$ $8.29 k-0.96 k$	$5 \cdot 38$ 5.8
", \quad29	$63 \cdot 30$ 63.32	$62 \cdot 97 h+56 \cdot 97 k$ $58.15 h+62.45$	$54.68 h+57.93 k$ $57.05 k+57.38 k$	$8.29 k-0.96 k$ $1.10 k+5.07 k$	5.83 4.92

Date.	Temp.	$[\mathrm{C} \cdot \mathrm{F}]$	\mathbf{Y}_{3}	Differeuce of Length in Micrometer Divisions.	$\mathbf{Y}_{55}-[\mathrm{c} \cdot \mathrm{F}]$
1865.					
May 31	61.21	$2.60 h+25.05 k$	$25.08 h+23.93 h$	$0.52 h+1.12 k$	1.31
	61.22	$25.68 h+20.65 h$	$25.42 h+19.88 h$	$0.26 h+0.77 h$	0.82
	61.28	$20.52 h+26.77 k$	$25.42 h+21.92 k$	$-4.90 h+4.85 h$	-0.02
" "	61.35	$19.13 h+24.60 k$	$20.30 h+22.50 h$	$-1.17 h+2 \cdot 10 k$	- 0.75
" ",	61.41	$18.83 h+29.18 k$	$10.88 h+35.9+k$	$7.95 h-6.76 h$	0.93
	$61 \cdot 41$	$21.92 h+24.93 k$	$22 \cdot 43 h+24 \cdot 58 h$	$-0.51 h+0.35 k$	-0.13
June	60.79	$21.43 h+28.50 k$	$22.53 h+28.03 h$	$-1.10 h+0.47 h$	-0.50
, "	60.74	$21.38 k+29.42 k$	$2 \mathrm{I} \cdot 28 h+29 \cdot 48 k$	0.10h-0.06h	0.03
", "	60.84	$22.00 h+30.38 k$	$28 \cdot 52 h+24.32 h$	$-6.52 h+6.06 h$	-0.35
" "	60.90	$29.68 h+21.90 k$	$26 \cdot 85 h+24 \cdot 22 h$	$2.83 h-2.32 k$	0.40
29	63.33	$59.70 h+56 \cdot 05 h$	$58.60 h+55.87 h$	$1.10 h+0.18 h$	1.02
" "	63.43	$54 \cdot 20 h+60 \cdot 13 h$	$57.05 h+56.50 h$	$-2.85 k+3.63 k$	0.63
", "	63.44	$57 \cdot 85 h+59 \cdot 10 k$	$58.98 h+56 \cdot 45 h$	$-1.13 h+2.65 h$	1.22
,	$63 \cdot 38$	$58 \cdot 73 h+56 \cdot 75 h$	$57.53 h+56.73 h$	$1.20 h+0.02 h$	0.97
30	$63 \cdot 15$	$58.55 h+58.13 k$	$58.18 h+57.42 h$	$0.37 h+0.71 h$	0.86
, "	$63 \cdot 13$	$58.93 h+57.80 k$	$58.08 h+58.08 k$	0.85h-0.28h	0.45
" \quad	63.09	$61.58 h+56 \cdot 30 h$	$6 \mathrm{~J} \cdot 15 h+56 \cdot 17 h$	$0.43 h+0.13 h$	0.45
", ",	63.11	$60.43 h+55.83 h$	$62 \cdot 33 h+54 \cdot 13 k$	$-1.90 h+1.70 h$	-0.15
" "	63.07	$60.60 h+57.48 k$	$59 \cdot 65 h+57 \cdot 7^{8 k}$	0.95h-0.30 ${ }^{\text {a }}$	0.52
" ,"	63.08	$55.07 h+62.10 k$	$55.25 h+60.67 k$	$-0.18 h+1.43{ }^{2}$	1.00

Date.	Teup.	[F. IL]	$\mathbf{Y}_{5 \overline{5}}$	Difference of Length in Micrometer Divisions.	[F.H] ${ }^{\text {c }} \mathbf{Y}_{55}$
$\begin{aligned} & 1865 . \\ & \text { June } 24 \end{aligned}$					
	63.53	99.07 $k+98.37 k$	$126.68 h+140 \cdot 13 k$		$55 \cdot 32$
" ,	63.61	$99.55 h+95.87 k$	$130.62 h+135.15 k$	$31.07 h+39 \cdot 28 h$	56.09
" "	63.72	$89.00 h+106.13 h$	$130.02 h+136.32 h$	$41 \cdot 02 h+30 \cdot 19 h$	56.75
" "	63.82	$92.88 h+102.03 h$	$129.37 h+135.87 k$	$36 \cdot 49 h+33 \cdot 84 h$	56.06
	$63 \cdot 89$ 63.72	$93.90 h+101.01 k$ $92.43 h+101.63 h$	$132.00 h+133.22 h$ $127.23 h+137.27$	$38 \cdot 10 h+32 \cdot 21 h$ $34 \cdot 80 h+35 \cdot 64 h$	$56 \cdot 04$ $56 \cdot 15$
26	63.72 63.77	$92.43 h+101.63 h$ $96.68 h+97.08 h$	$127.23 h+137.27 h$ $127.02 h+136.45 h$	$34 \cdot 80 h+35 \cdot 64 h$ $30 \cdot 34 h+30 \cdot 37 h$	$56 \cdot 15$ $55 \cdot 58$
" "	63.77	$96.68 h+97.08 h$	$127.02 h+136.45 k$	$30^{\circ} \cdot 34 h+39.37 k$	$55 \cdot 58$
	63.87 63.99	$95.85 h+96.43 k$ $86.81 h+106.53 h$	$127.98 h+134.43 h$ $129.85 h+132.06 k$	$32 \cdot 13 h+38.00 h$ $43.04 h+25.53 h$	55.92 54.64
" "	63.99	$86.81 h+106.53 k$	$129.85 h+132.06 k$	$43.04 k+25.53 k$	$54 \cdot 64$
"	64.04	$94.06 h+98.10 h$	$130.85 h+131.02 h$	$36 \cdot 79 h+32.92 h$	55.57

In order to obtain from these comparisons- 160 in number-the most probable values of the different intervals, let y be the excess of the expansion of a yard of \mathbf{I}_{s} above that of $\mathbf{Y}_{\mathbf{m}}$ and at 62° let

$$
\begin{align*}
& {[\mathbf{A} \cdot \mathbf{D}]=\mathbf{Y}_{\mathrm{B}}+30+r_{1}} \tag{1}\\
& {[\mathrm{~A} \cdot \mathrm{C}]=\frac{4}{3} \mathbf{Y}_{\mathrm{N}}+15+x_{2}} \\
& {[\mathrm{~A} \cdot \mathrm{D}]=\frac{5}{3} \mathbf{Y}_{50}+5+x_{\mathrm{s}}} \\
& {[\mathbf{A} \cdot \mathrm{E}]=\frac{\mathrm{e}}{3} \mathbf{Y}_{\mathrm{s}}+25+x_{\mathrm{s}}} \\
& {[\mathbf{A} \cdot \mathbf{F}]=\frac{7}{3} \mathbf{Y}_{\mathrm{sb}}+15+x_{\mathrm{s}}} \\
& {[\mathrm{~A} \cdot \mathrm{H}]=\frac{10}{3} \mathbf{Y}_{\mathrm{s}}+70+x_{0}}
\end{align*}
$$

Then we have equations of the following form:-
No. of Equations.

$$
\begin{align*}
& {[\mathrm{A} \cdot \mathrm{~B}]-\mathrm{Y}_{\mathrm{bs}}=x_{1}+(t-62) y+30 \ldots \ldots 10} \tag{2}\\
& {[\mathrm{~B} \cdot \mathrm{e}]-\mathbf{Y}_{\mathrm{bs}}=-x_{1}+x_{4}+(t-62) y-5 \cdots 30} \\
& {[\mathrm{C} \cdot \mathrm{~F}]-\mathbf{Y}_{\mathrm{b}}=-x_{2}+x_{5}+(t-62) y \ldots \ldots 20} \\
& {[\mathrm{~F} \cdot \mathrm{H}]-\mathrm{Y}_{\mathrm{bs}}=-x_{5}+x_{0}+(t-62) y+55 \ldots 10} \\
& {[\mathrm{~A} \cdot \mathrm{~B}]-[\mathrm{B} \cdot \mathrm{e}]=2 x_{1}-x_{4}+35 \ldots \ldots \text { เо }} \\
& {[\mathrm{B} \cdot \mathrm{E}]-[\mathrm{C} \cdot \mathrm{~F}]=-x_{1}+x_{2}+x_{5}-x_{\mathrm{s}}-5 \ldots .20} \\
& {[\mathrm{C} \cdot \mathrm{~F}]-[\mathrm{F} \cdot \mathrm{H}]=-x_{\mathrm{s}}+2 x_{\mathrm{s}}-x_{0}-55 \ldots \ldots .10} \\
& {[\mathrm{~B} \cdot \mathrm{D}]-[\mathrm{C} \cdot \mathrm{E}]=-x_{1}+x_{3}+x_{\mathrm{s}}-x_{4}-35 \ldots \text { เо }} \\
& {[\mathrm{C} \cdot \mathrm{E}]-[\mathrm{D} \cdot \mathrm{~F}]=-x_{2}+x_{\mathrm{s}}+x_{4}-x_{5} \ldots \ldots . .10} \\
& {[\mathrm{~B} \cdot \mathrm{D}]-[\mathrm{D} \cdot \mathrm{~F}]=-x_{1}+2 x_{\mathrm{s}}-\mathrm{r}_{5}-35 \ldots \ldots .10} \\
& {[\mathrm{~B} \cdot \mathrm{C}]-[\mathrm{c} \cdot \mathrm{D}]=-x_{1}+2 x_{2}-x_{\mathrm{s}}-5 \ldots \ldots . .10} \\
& {[\mathrm{D} \cdot \mathrm{E}]-[\mathrm{E} \cdot \mathrm{~F}]=-x_{3}+2 x_{4}-x_{5}+30 \ldots \ldots \text {. } 10}
\end{align*}
$$

The 160 equations multiplied tbrough according to the method of least squares give finally-

$$
\begin{aligned}
& 0=+670 \cdot 00+2080 \cdot 56 y+17 \cdot 96 x_{0}+146 \cdot 42 \cdot x_{1}-3 \cdot 36 x_{i} \quad-137 \cdot 27 x_{4}-14 \cdot 60 x_{0} \\
& 0=-29.07+17.96 y+20.0 x_{0}+10 x_{9} \quad-30 x_{3} \\
& 0=+158.34+146.42 y \quad+130 x_{1}-70 x_{2}-20 x_{3}-60 x_{4}+30 x_{5} \\
& 0=-100 \cdot 20-3 \cdot 36 y+10 x_{11}-50 x_{1}+110 x_{2}-20 x_{3} \quad-50 x_{5} \\
& 0=-73.97 \quad-20 x_{1}-20 x_{5}+80 x_{3}-20 x_{4}-20 x_{5} \\
& 0=-78.84-137.27 y \quad-60 x_{1} \quad-20 x_{3}+120 x_{5}-50 x_{3} \\
& 0=+138.46-14.60 y-30 x_{0}+30 x_{1}-50 x_{2}-20 x_{3}-50 x_{1}+120 x_{5}
\end{aligned}
$$

By the solution of these equations we get

$$
\begin{aligned}
& y=-.3009 \ldots \ldots . . \text { weight }=1740.07 \\
& x_{0}=+.62 \quad \cdots \cdots \cdots \quad 4.81 \\
& x_{1}=-.39 \\
& x_{2}=+.57 \\
& x_{3}=+.84 \\
& x_{4}=+.03 \\
& x_{5}=-.55
\end{aligned}
$$

If now we substitute these values of $y x_{0} x_{1} \ldots \ldots x_{5}$ in the first seventy of equations (2), we get the following system of errors of the comparisons of the different yards on I_{s} with the yard $Y_{s s}$:-

$[\mathrm{A} \cdot \mathrm{B}]-\mathrm{Y}_{53}$	$[\mathrm{B} \cdot \mathrm{E}]-\mathrm{Y}_{55}$			$[\mathrm{C} \cdot \mathrm{F}]-\mathrm{Y}_{\mathrm{ss}}$		H] - $\mathbf{Y}_{\text {bs }}$
+ 0.58	$+0.90$	+ 0.45	+ 0.77	+0.43	-0.50	$+0.38$
+0.11	- 2.13	+0.91	$+0 \cdot 46$	-0.07	- 0.92	-0.41
-0.06	$+0.03$	+ 0.53	+ 0.37	- 0.92	- 0.33	- 1.10
+ 1.16	+0.23	+ 0.46	+0.10	-0.18	- 0.56	- 0.44
+ 0.78	- 0.06	+ 0.77	+ 1.41	-0.01	- 0.60	- 0.44
+ 0.80	$+0.42$	+ 1.53	+ 1.16	- 1.07	- 1.01	-0.50
+ 0.10	$+0.13$	+ 0.95	+ 0.15	- 1.26	- 1.00	+ 0.05
+ 0.28	$+0.21$	+0.37	+0.36	- 0.71	- 1.60	-0.32
- 0.06	-0.28	+0.85	+ 0.86	-1.12	- 0.92	+ 0.93
-0.03	$+0.12$	+ 0.06	- 0.06	-0.39	-0.44	- 0.02

The substitution of $y x_{0} \ldots \ldots x_{5}$ in the remaining ninety equations of (2), gives the following system of errors of the comparisons of the different subdivisions of the bar one with another. The first four columns appertain to the yard spaces; the fifth, sixth, and seventh columns to the two-feet spaces; and the last two columns to one-foot spaces:-

$[1 \cdot 1]-[4 \cdot 6]$	$[\mathrm{n} \cdot \mathrm{E}]-\left[\mathrm{c}^{\prime} \mathrm{x}\right]$]			$[u \cdot c]-\left[c^{\prime} \mathrm{D}\right]$	F]
1.20	+0.25	+ 1.14	+ 0.37	$+0.72$	- 0.92	+ 0.20	+ 0.10	- 1.77
1 I	$+0.76$	+ 0.65	+ 0.08	- 1.09	- 0.00	- 0.69	$+0.84$	- 2.59
-0.34	+ 0.19	- 1.19	-0.81	-0.39	+ 0.26	+ 0.03	- 1.45	- 2.51
-0.78	+0.09	- 0.73	+ 1.33	- 1.54	+0.57	+ 0.49	- 1.59	- 1.83
-0.34	+0.50 $+\quad 1.06$	-0.29	+ 0.07	- 0.37	+0.37	-0.46	+ 0.26	-0.82
-0.58	+ 1.06	$1 \cdot 35$	+ 0.50	- 0.04	+ 0.09	1.21	-0.78	- 0.20
+ 0.37	$+0.81$	1.29	- 0.09	- 1.03	-0.11	0.11	-0.17	-0.22
- 0.82	+0.37	-0.35	-1.14	-0.83	- 1.23	+ 0.05	-0.12	-0.11
+0.01 $+\quad 0.1$	-1.70	$+0.26$	- 1.27	${ }^{1} 182$	+ 0.24	- 0.08	- 0.09	+0.34
+ 0.01	- 1.07	- $0.3+$	-0.89	- 1.83	+ 0.20	- 0.62	-0.01	-0.16

Arranged as the errors are here, in groups, it appears that some groups are not wholly free from a suspicion of constant error. For instance, the two yards [B•e] [c•F] when compared with the Standard Yard Y_{55} do not exhibit the same difference of length as when compared directly one with the other.

The sum of the squares of the 160 crrors $=103.97$; hence the probable crror of one comparison

$$
\begin{equation*}
=.674 \sqrt{103.97} 160-7= \pm 0.556 \tag{5}
\end{equation*}
$$

And the probable errors of x_{0} and y -

$$
\begin{align*}
& x_{0} \ldots \ldots . \pm \frac{ \pm .556}{\sqrt{4} .8 \mathrm{I}}= \pm 0.25 \tag{6}\\
& y \ldots{ }^{ \pm} \cdot \frac{0.556}{\sqrt{1} 740}= \pm 0.013 \tag{7}
\end{align*}
$$

Combining equations (1) and (4) we get for the true lengths of the various intervals the following :-

$$
\begin{align*}
& {[\mathrm{A} \cdot \mathrm{~B}]=\mathbf{Y}_{\mathrm{SS}}+29 \cdot 6 \mathrm{I}} \tag{8}\\
& {[\mathrm{~A} \cdot \mathrm{C}]=\frac{4}{3} \mathbf{Y}_{\mathrm{SS}}+15 \cdot 57} \\
& {[\mathrm{~A} \cdot \mathrm{D}]=\frac{3}{3} \mathbf{Y}_{S 5}+5 \cdot 84} \\
& {[\mathrm{~A} \cdot \mathrm{E}]=\frac{5}{3} \mathbf{Y}_{S S}+25 \cdot 03} \\
& {[\mathrm{~A} \cdot \mathbf{F}]=\frac{7}{3} \mathbf{Y}_{\mathrm{SS}}+14.45}
\end{align*}
$$

And for the length of the whole bar $[A \cdot H]=I_{B}$

$$
\begin{equation*}
I_{s}=\frac{10}{3} Y_{06}+70 \cdot 62 \pm 0.25 \tag{9}
\end{equation*}
$$

XIX.

DETERMINATION OF TIIE LENGTH OF THE INDIAN STANDARD FOOT
 AND ITS SUBDIVISIONS.

1.

This bar is of the same dimensions as OF described at page 14, but is of steel. The lines marking the inches and smaller subdivisions are drawn on gold pins let into the bar. The extreme inches are subdivided into twentieths. The 13 inch-lines are marked a, b, c, d, $e, f, g, h, k, l, m, n, p$.

This bar was compared with the scale OF (entire length) 10 times at about the temperature 53°, and 20 times at the mean temperature of about $64^{\circ} 5$.

The six-inch spaces $[a \cdot g],[d \cdot l],[g \cdot p]$, were then compared amongst themselves 15 times; the five-inch spaces $[u \cdot f],[b \cdot g]$, were compared together 10 times; the fourinch spaces $[a \cdot e],[b \cdot f],[c \cdot g]$ were compared together 10 times; and finally the three-inch spaces $[a \cdot d],[b \cdot e],[c \cdot f],[d \cdot g]$, were compared together to times. The comparisons of these intervals were conducted precisely as explained in the case of OF, Section IV.

The comparisons are given in the following Tables:-

Comparigons of the Oidnance Standard Foot with the Indian Standard Foot.
I.

$\begin{aligned} & \text { Date. } \\ & 1865 . \end{aligned}$		Temp.	OF	IF	Difference of Leagth in Micrometer IVivifione	IF-OF
April	18	52.50	$24.95 k+25^{1} 5^{k}$	$22.20 h+20.92 k$	$2 \cdot 75 h+4 \cdot 3.3 k$	$5 \cdot 57$
A	,		$23 \cdot 40 h+26 \cdot 32 h$	$27 \cdot 17 h+15 \cdot 97 k$	$-3.77 k+10.35 k$	$5 \cdot 27$
"	,	52.87	$23.94 k+23.27 k$	$21 \cdot 65 k+21.55 k$	$2 \cdot 27 h+1.72 h$	$3 \cdot 18$
"		53.10	$22.87 h+23.92 k$	$23.52 h+19.15 k$	$-0.65 h+4.77 k$	$3 \cdot 29$
"	19	52.82	$24.15 h+28.00 k$	$21.40 h+25.75 k$	$2.75 h+2.25 k$	3.98
"	20	52.88	$25.15 h+26.07 h$	$22.65 h+22.97 k$	$2 \cdot 50 h+3 \cdot 10 k$	+46
"	"	53.05	$25.20 h+25.20 k$	$21.70 h+23.80 h$	$3.50 h+1.40 k$	3.90
"	"	53.08	$20.95 h+29.32 h$	$14.40 h+29.60 h$	$6.55 h-0.28 h$	4.99
"	,	53.14	$26.25 h+24.07 k$	$22.45 h+21.80 k$	$3.80 h+2.27 k$	4.84
"	,	53.19	$24.77 h+24.87 k$	$2+52 k+19.70 k$	$0.25 k+5.17 k$	4.33
July	5	63.21	$72.07 h+77.50 h$	$71 \cdot 15 h+75 \cdot 32 k$	$0.92 h+2.18 h$	2.47
"	"	$63 \cdot 36$	$70.85 h+78.52 h$	$70.52 h+75.07 k$	$0.33 h+3.45 k$	3.02
"	"	63.53	$73.30 h+76.27 k$	$70 \cdot 97 h+7+27 k$	$2 \cdot 33 h+2.00 k$	3.45
"		63.68	$68.87 h+79.10 k$	$70 \cdot 32 h+7+30 h$	$-1.45 h+4.80 k$	2.68
"	6	63.85	$68.20 h+79.80 h$	$66 \cdot 30 h+78.25 h$	$1.90 h+1.55 k$	$2 \cdot 75$
"	"	64.04	$68.15 h+79.60 h$	$69 \cdot 15 h+74.45 k$	$-1.00 h+5 \cdot 15 k$	$3 \cdot 32$
"	"	6.24	$68.17{ }^{h}+78.95^{h}$	$69 \cdot 15 h+73 \cdot 55 h$	$-0.98 h+5.40 k$	3.53
"	"	$64 \cdot 42$	$69 \cdot 10 h+79.65 h$	$68.65 h+74.65 k$	$0 \cdot 45 h+5.00 h$	$4 \cdot 35$
"	3	64.55	$69.47{ }^{h}+77.55^{k}$	$69.07 h+74.57{ }^{\prime}$	$0.40 h+2.98 h$	2.70
"	7	64.73	$70.42 h+77.95 k$	$69.40 h+75.42 k$	$1.02 h+2.53 k$	2.83
"	,	64.77	$71.92 k+75.77 k$	$72.47{ }^{2}+70.40 h$	$-0.55 h+5 \cdot 37 k$	3.85
"	,	64.86	$75.27 h+71.75 k$	$74.05^{k}+70.25 k$	$1.22 h+1.50 k$	$2 \cdot 17$
"	,	64.96	$71 \cdot 72 h+75 \cdot 40 k$	$67.90 h+75.52 k$	$3.82 h-0.12 h$	$2 \cdot 94$
"	"	65.12	$72 \cdot 52 h+73.00 k$	$71.20 h+71.05 k$	1.32h+1.95h	2.61
"		65.22	$70 \cdot 27 h+76 \cdot 37 h$	$69.47 h+73 \cdot 35 k$	$0.80 h+3.02 k$	3.05
"	8	65.01	$73 \cdot 72 h+73 \cdot 27 k$	72.25 $k+71 \cdot 50 k$	$1 \cdot 47 h+1.77 h$	$2 \cdot 58$
"	"	65.11	71.75 $h+7+82 h$	71.65 ${ }^{1}+71.32 k$	$0 \cdot 10 h+3.50 k$	2.87
	"	65.21	$74 \cdot 30 h+73 \cdot 10 h$	$71.82 h+71.55 k$	$2 \cdot 4^{8 h}+\mathbf{1} \cdot 55 h$	$3 \cdot 21$
	"	$65 \cdot 33$	$73.70 h+73.05 k$	$71.80 h+71.67 h$	$1.90 h+1.38 k$	2.61
"	"	$65 \cdot 36$	$64 \cdot 17 h+83 \cdot 5^{2} k$	$63.32 h+81.60 h$	$0.85 h+1.92 k$	2.21

Comparisons of Subdivisions.
II.

$\mathrm{Z}-[a \cdot g]$	$Z-[d \cdot 1]$	$\mathrm{Z}-[y \cdot p]$
$14.85 h+15.90 h$	$15.85 h+14.17 k$	$15.07 h+10.57 k$
$15.80 h+15.67 h$	$16.32 h+14.50 k$	$17.02 h+8.77 h$
$15.82 h+16.42 h$	$15.17 h+14.47{ }^{k}$	$15.15{ }^{\text {h }}+11.45 k$
$11.97 h+15.97 k$	$16.40 h+11.98 h$	$16.15 h+10 \cdot 42 h$
$15.92 h+13.77 k$	$13 \cdot 50 h+15.85 k$	12.50h+12.33
$14.55 h+14.85 k$	$15.75 h+13.90 k$	$19.07 h+6.85 h$
$14.25 h+16.02 k$	${ }_{15} 5.02 h+15.12 k$	$17.07 h+8.62 h$
$14.45 h+15.92 k$	$15 \cdot 75 h+15 \cdot 35 k$	$15.60 h+10.72 h$
$12.60 h+16.78 h$	$13.87 h+16.40 k$	$13 \cdot 17 h+13.15 h$
$14.80 h+15.37 h$	$16.40 h+13.82 k$	$16.12 h+9.67 k$
$15 \cdot 10 h+10.45 k$	$12.52 h+12.20 k$ $0.72 h+14.25 k$	$\begin{array}{r} 12.35 h+9 \cdot 10 k \\ 8.90 h+12.12 k \end{array}$
$11.00 h+14.47 k$ $12.52 h+12.72 h$	$9 \cdot 72 h+14 \cdot 25 k$ $14.10 h+10.87$	$11.20 h+10.07 k$
$14.80 h+9.87 h$	${ }_{13.77}{ }^{1}+15.72 k$	$16.10 h+5.20 k$
$15.10 h+10.30 h$	$13.20 h+12.77^{k}$	$9 \cdot 97^{h+11.50 k}$

H H 2

III.

$\mathbf{Z}-[a \cdot f]$	$Z-[b \cdot g]$
14.17 $k+13.35 k$	$15.40 h+10.15 k$
$12.17 h+15.35 k$	$11.77 k+14.37 k$
$12.85 h+15.20 k$	$13.77 h+11.45 k$
$13.77 h+14.17 k$	$16 \cdot 42 h+9 \cdot 12 k$
$12 \cdot 32 h+14.75 k$	11.10 $h+14.17 k$
$12.22 h+14.05 k$	$11.87 h+13.32 h$
$1 \mathrm{I} \cdot 75 \mathrm{~h}+14.70 k$	$10.82 h+14.37 h$
$8 \cdot 70 h+11.97 k$	$7.90 h+10.65 h$
$8.50 h+11.25 h$	$8.32 h+10.15 k$
$7.62 k+13.05 k$	$6.90 h+13.35 k$

IV.

$\mathrm{Z}-[a \cdot e]$	$z-[b \cdot f]$	$\mathrm{Z}-[c \cdot g]$
$8.82 h+13.60 h$	$15.52 k+8.95 k$	$13.40 h+10.62 k$
$9.62 h+13.67 h$	$11 \cdot 42 h+9 \cdot 27 k$	$11.70 h+12.82 k$
$11.35 h+11.50 k$	$11.70 h+9.17 k$	$9.97 h+11.67 k$
$10.02 h+12.85 h$	$9.80 h+11.05 k$	$10.70 h+12.55 k$
$9.47{ }^{9}+13.10 k$	9.45h + $10.32 k$	$10.05 h+13.27 k$
$13.02 h+9.52 k$	$10 \cdot 40 h+11.37 k$	$10.02 h+13.15 h$
$12.02 h+15.50 k$	${ }^{10.2 .25} k+11.15 k$	$9 \cdot 15 h+14.45 k$
$12.57 k+11.10 k$	${ }^{1} 3 \cdot 35 h+8.72 h$	$13 \cdot 52 h+11.00 k$
$10.77 h+12.32 h$	$8.72 h+12.90 h$	$7.57 h+14.50 k$
10.77 $k+11.90 k$	$11.40 h+10 \cdot 15 h$	$11.60 h+12.10 k$

Y.

$Z-[a \cdot d]$	$Z-[b \cdot e]$	$Z-[c \cdot f]$	$Z-[d \cdot g]$
	$13.12 k+14.05 h$	$14.75{ }^{\prime}+14.57 h$	${ }^{1} 5.65 h+14.62 h$
$15.17 h+13.22 h$	$14.20 h+13.47 k$	$15.25 k+15 \cdot 30 k$	${ }_{15} 5.00 h+16.87 h$
$12.70 h+15.47 k$	$12.17 h+16.50 h$	$12.97 k+17.30 k$	$13.57 h+17.60 k$
$11.97 k+17.15 k$	$14.60 k+13.90 k$	$16.22 h+13.00 h$	$15.72 h+16.00 h$
$13.17 k+15 \cdot 3.5$	$14.95 h+13.67 k$	$15.32 h+14.05 h$	$15.92 h+14.00 k$
$1+35 k+15.07 k$	$13.77 h+15.25 k$	$13.00 h+16.50 k$	$14.80 h+16.97 h$
$15 \cdot 12 h+1+05 k$	$14.35 h+14.57 k$	$15.60 h+14.65 h$	$17.37 h+14.37 k$
$15.37 h+12.62 k$	$1+52 h+1+17 h$	$15.35 h+15.47 k$	$15.55 h+15.72 k$
$13 \cdot 38 k+15 \cdot 3^{8} k$	$12.45 k+15.45 k$	$14.23 h+16.33 h$	$13.85 h+17.40 h$
$13 \cdot 28 k+15 \cdot 43 k$	$12.05 h+15.93 k$	$14.63 h+15.58 k$	$16.78 k+15.03 k$

Substituting the values of h and k in the last four Tables, they become-
VI.

$\mathrm{Z}-[a \cdot g]$	$\mathrm{Z}-[d \cdot l]$	$\mathrm{Z}-[g \cdot p]$
	24.49	23.91
25.06	$2+.54$	20.41
25.68	23.60	20.53
22.26	22.60	21.18
23.64	23.38	19.75
23.42	23.61	20.62
24.11	24.00	20.45
24.19	24.77	20.95
23.41	$2+11$	20.96
24.03	24.06	20.53
20.34	19.69	17.08
20.29	19.10	16.75
20.10	19.88	16.94
19.64	20.30	16.95
20.22	20.68	17.10

VII.

$\mathrm{Z}-[a . f]$	$\mathrm{Z}-[b . g]$
21.92	20.34
21.92	20.82
22.34	20.08
22.25	20.33
21.56	20.13
20.93	20.06
21.07	20.07
16.47	14.78
15.73	14.71
16.47	16.14

VIII.

$Z-[a . e]$	$Z-[u . f]$	$Z-[c . g]$
17.86	16.30	19.13
18.56	16.47	19.53
18.20	16.62	17.24
18.22	16.61	18.52
17.98	15.75	18.58
17.95	17.34	18.46
18.73	17.05	18.80
18.85	17.57	19.52
18.39	17.22	17.59
18.06	17.16	18.88

IX.

$\mathrm{Z}-[\boldsymbol{a} \cdot \boldsymbol{d}]$	$\mathrm{Z}-[\boldsymbol{b} \cdot \boldsymbol{6}]$	$\mathrm{Z}-[\varepsilon \cdot f]$	$\mathrm{Z}-[d \cdot g]$
22.47	21.64	23.35	24.11
22.61	22.04	24.33	25.38
23.24	22.84	24.11	24.83
23.20	22.70	23.27	25.26
22.72	22.79	23.39	23.83
23.43	23.11	23.50	25.31
23.23	23.03	24.09	25.27
22.29	22.85	24.55	24.90
22.91	22.23	24.34	24.89
22.87	22.29	24.06	25.33

2.

Let the excess of the scale IF above OF be expressed by

$$
\begin{equation*}
\mathbf{I F}-\mathbf{O F}=x+y(t-62) \tag{1}
\end{equation*}
$$

x being the difference of length at 62°, and y the difference of expansion of the two bars for 1° Fahrenheit; then the first of the above tables supplies us with 30 equations, which, treated by the method of least squares, resolve themselves into

$$
\begin{array}{r}
30 x-40 \cdot 15 y-103 \cdot 01=0 \tag{2}\\
-40 \cdot 15 x+960 \cdot 306 y+250 \cdot 73=0
\end{array}
$$

If we write A and B for the absolute terms

$$
\begin{align*}
& x+0.035309 \mathrm{~A}+0.001476 \mathrm{~B}=0 \tag{3}\\
& y+0.001476 \mathrm{~A}+0.001103 \mathrm{~B}=0,
\end{align*}
$$

which give us finally for x and y,

$$
\begin{align*}
x=+3.27 \ldots \ldots . . & \text { Reciprocal of weight } \tag{4}
\end{align*}=.0353
$$

These values substituted in the equations of condition give the following system of errors:-

April 18, 19, 20.	July 5, 6.	July \%, 8.
-1.12	+0.65	
-0.84	+0.08	-0.93
+1.22	-0.37	+0.74
+1.07	+0.38	+0.04
+0.43	+0.29	+0.27
-0.06	-0.31	-0.18
+0.48	-0.54	+0.31
-0.61	-1.39	+0.01
-0.47	+0.25	-0.34
+0.03		

The ann of the squares of these errors is 10.996 ; hence the probable error of a single comparison is

$$
\begin{equation*}
\pm 0.674 \sqrt{\frac{10 \cdot 996}{30-2}}= \pm 0.42 \varepsilon \tag{5}
\end{equation*}
$$

and the probable errors of x and y

$$
\begin{align*}
& x \ldots \ldots \pm 0.422 \sqrt{.0353}= \pm 0.079 \tag{6}\\
& y \cdots \pm \pm 0.422 \sqrt{.0011}= \pm 0.014
\end{align*}
$$

We have then, at 62°, the difference in length of the two scales

$$
\begin{equation*}
I F-O F=+3.27 \pm 0.069 \tag{7}
\end{equation*}
$$

but by equation (7) page 77, the length of $O F$ is

$$
\frac{1}{3} \mathbf{Y}_{53}-0.3^{6} \pm 0.108 ;
$$

consequently, the length of the Indian Standard Foot at 62° is

$$
\begin{equation*}
\frac{1}{3} \mathbf{Y}_{S 5}+2.91 \pm 0.194 \tag{8}
\end{equation*}
$$

3.

Let the values of the spaces $[a \cdot g],[g \cdot p],[d \cdot \|$ be as follows :-

$$
\begin{align*}
& {[a \cdot g]=\frac{1}{2}[a \cdot p]+x_{g}} \tag{9}\\
& {[g \cdot p]=\frac{1}{2}[a \cdot p]-x_{v}} \\
& {[d \cdot l]=\frac{1}{2}[a \cdot p]+x}
\end{align*}
$$

And referring to Table VI., let $\frac{1}{2}[a \cdot p]-z_{n}$ be the distance of the microscopes in the nth comparison or line, while the quantities entered in that line are $\alpha_{n} \beta_{n} \gamma_{n}$; then we have the following :-

$$
\begin{array}{cll}
x_{y}+z_{1}+\alpha_{1}=0 & x+z_{1}+\beta_{1}=0 & -x_{g}+z_{1}+\gamma_{1}=0 \tag{10}\\
x_{g}+z_{2}+\alpha_{2}=0 & x+z_{2}+\beta_{2}=0 & -x_{g}+z_{2}+\gamma_{2}=0 \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
x_{y}+z_{15}+\alpha_{15}=0 & x+z_{15}+\beta_{16}=0 & -x_{g}+z_{15}+\gamma_{10}=0
\end{array}
$$

in all, 45 equations. These solved give-

$$
\begin{array}{ll}
30 x-(\alpha)+2(\beta)-(\gamma) & =0 \tag{II}\\
30 x_{g}+(\alpha) & -(\gamma)
\end{array}=0
$$

whence

$$
\begin{align*}
& x_{g}=-1.65 \cdots \cdots \text { weight }=30 \tag{12}\\
& x=-1.47 \ldots \ldots, \quad=10
\end{align*}
$$

The sum of the squares of the errors of the equations is 8.279 ; hence the probable error of an equation is

$$
\begin{equation*}
\pm 0.674 \sqrt{\frac{8.279}{45-17}}= \pm 0.366 \tag{13}
\end{equation*}
$$

and the probable errors of x_{g} and x

$$
\begin{align*}
& x_{y} \ldots \ldots . \frac{ \pm \cdot 366}{\sqrt{30}}= \pm \cdot 067 \tag{14}\\
& x \ldots \ldots \cdot \frac{ \pm \cdot 366}{\sqrt{10}}= \pm \cdot 116
\end{align*}
$$

We have then for $[a \cdot g],[g \cdot p]$, and $[d \cdot l]$ in terms of $[a \cdot p]$ the following,-

$$
\begin{align*}
& {[a \cdot g]=\frac{1}{2}[a \cdot p]-1 \cdot 65 \pm 0.067} \tag{15}\\
& {[g \cdot p]=\frac{1}{2}[a \cdot p]+1 \cdot 65 \pm 0 \cdot 067} \\
& {[d \cdot l]=\frac{1}{2}[a \cdot p]-1 \cdot 47 \pm 0.116}
\end{align*}
$$

Again, to determine the errors of the lines b, c, d, e, f, with respect to a and g, let

$$
\begin{align*}
& {[a \cdot b]=\frac{1}{6}[a \cdot g]+x_{b}} \tag{I6}\\
& {[a \cdot c]=\frac{2}{6}[a \cdot g]+x_{c}} \\
& {[a \cdot d]=\frac{9}{6}[a \cdot g]+x_{u}} \\
& {[a \cdot e]=\frac{4}{6}[a \cdot g]+x_{a}} \\
& {[a \cdot f]=\frac{5}{6}[a \cdot g]+x_{f}}
\end{align*}
$$

and proceeding as at page 48 , we find ultimately from the numbers in Tables VII,
VII, and IX,

$$
\begin{array}{r}
90\left(x_{b}+x_{f}\right)+109 \cdot 26=0 \tag{17}\\
90\left(x_{b}-x_{f}\right)+139 \cdot 32=0 \\
90\left(x_{c}-x_{\theta}\right)-17 \cdot 19=0 \\
90\left(x_{c}+x_{t}\right)-21 \cdot 51=0 \\
20 x_{d}-20 \cdot 14=0
\end{array}
$$

whence

$$
\begin{align*}
& x_{b}=-\mathrm{I} \cdot 38 \ldots \ldots \text { weight }=\frac{180}{11} \tag{18}\\
& \left.x_{c}=+0.2 \mathrm{I} \ldots . .\right\rangle=\frac{180}{17} \\
& x_{d}=+\mathrm{I} .01 \quad, \quad=\frac{180}{9} \\
& x_{s}=+0.02 \ldots \ldots,=\frac{180}{17} \\
& x_{f}=+0.17 \cdots, \ldots, \quad=\frac{180}{111}
\end{align*}
$$

Finding next the values of the z 's, and substituting in the equations of condition, we find the errors and the sum of their squares equal to II.IOI5. Hence the probable error of an equation is

$$
\begin{equation*}
\pm 0.674 \sqrt{\frac{11 \cdot 1015}{90-35}}= \pm 0.303 \tag{19}
\end{equation*}
$$

whence we have finally-

$$
\begin{align*}
& {[a \cdot b]=\frac{1}{6}[a \cdot g]-1.3^{8} \pm 0.074} \tag{20}\\
& {[a \cdot c]=\frac{2}{6}[a \cdot g]+0.21 \pm 0.093} \\
& {[a \cdot d]=\frac{3}{6}[a \cdot g]+1 \cdot 01 \pm 0.068} \\
& {[a \cdot b]=\frac{4}{6}[a \cdot g]+0.02 \pm 0.093} \\
& {[a \cdot f]=\frac{5}{6}[a \cdot g]+0.17 \pm 0.074}
\end{align*}
$$

To obtain these intervals in terms of $[a, y]$ we must make use of the first of equationa (15)-

$$
\begin{align*}
& {[a \cdot b]=1_{1}^{12}[a \cdot p]-1 \cdot 65 \pm \cdot 075} \tag{2I}\\
& {[a \cdot c]=\frac{2}{12}[a \cdot p]-0 \cdot 34 \pm \cdot 096} \\
& {[a \cdot d]=\frac{3}{1 \cdot 2}[a \cdot p]+0 \cdot 18 \pm \cdot 076} \\
& {[a \cdot e]=\frac{4}{12}[a \cdot p]-1 \cdot 08 \pm \cdot 103} \\
& {[a \cdot f]=\frac{5}{1 \cdot 2}[a \cdot p]-1 \cdot 20 \pm \cdot 093}
\end{align*}
$$

But we have seen that at the temperature 62° Fahrenheit-

$$
[a \cdot p]=\frac{1}{3} \mathbf{Y}_{55}+2 \cdot 91 \pm 0.191
$$

and substituting this in equations (21) and (15)-

$$
\begin{align*}
& {[a \cdot b]=\frac{1}{36} Y_{55}-1.41 \pm .076} \\
& {[a \cdot c]=\frac{2}{36} \mathbf{Y}_{55}+0.14 \pm .098} \tag{22}\\
& {[a \cdot d]=\frac{9}{36} Y_{55}+0.91 \pm .083} \\
& {[a \cdot e]=\frac{4}{36} \mathbf{Y}_{65}-0.11 \pm \cdot 112} \\
& {[a \cdot f]={ }_{3}^{56} \mathbf{Y}_{55}+0.01 \pm \cdot 108} \\
& {[a \cdot g]=\frac{6}{36} \mathbf{Y}_{55}-0.19 \pm .095} \\
& {[d \cdot l]={ }^{6} \mathbf{Y}_{55}-0.01 \pm \cdot 134}
\end{align*}
$$

These are the definite values of the different spaces. The errors are very small, and the central six-inch space on the scale $[d \cdot l]$, is doubtless the most precise ever laid off.

XX.

COMPARISONS OF

THE OLD AND NEW INDIAN STANDARDS

avo
0

1.

The old Indian Standard B, or, as it is designated in the "Account of the Measurement of the Lough Foyle Base," \mathbf{I}_{b}, is a bar similar in general construction to the Ordnance Survey Standard \mathbf{O}_{1}, but is not so strong : it is barely an inch in breadth, and only two inches in depth-supported on rollers at one-fourth and three-fourths of its length : it is painted white. The dots are in excellent preservation.

This bar was compared with \mathbf{O}_{2} (a bar similar in every respect to \mathbf{O}_{1}) in 1831 , by the late Lieutenant Murphy, R.E.; and again, in 1846, it was compared at Southampton with \mathbf{O}_{1}. Taking into account the difference of \mathbf{O}_{1} and \boldsymbol{O}_{2}, the results are as follows :-(See "Account of the Measurement of the Lough Foyle Base," page 96.)

$$
\begin{aligned}
& 1831 \ldots I_{b}=\mathbf{O}_{1}-.000801 \text { inch. } \\
& 1846 \ldots . . I_{b}=\mathbf{O}_{1}-.000865 \text {, }
\end{aligned}
$$

or, using the millionth of the yard as unit of small quantities,

$$
\begin{align*}
& 1831 \ldots \ldots I_{b}=O_{1}-22.25 \tag{1}\\
& 1846 \ldots I_{b}=O_{1}-24.03
\end{align*}
$$

No direct experiments on the value of the expansion of i_{b} have ever been made, so that there is some uncertainty on this point. We assume it in the comparisons now to be recorded, as equal to the expansion of \mathbf{O}_{1}.

With respect to the expansion of \mathbf{O}_{1}, it appears from page 93 that it is less than the expansion of Ol_{1} by $0.0446^{2} \pm .0236$. Now the direct experiments ou the latter bar give for its expansion under 1° Fahrenheit $21.5763 \pm$.0IO3. Hence the expansion of \mathbf{O}_{1} is $21.532 \pm .026$. For I_{B} and I_{B} we take the results of the second series of experiments, viz., 2I.I59士.OI9 and $32 \cdot 759 \pm$-OI9.-(See page 2I6.)
$\mathbf{I}_{\mathbf{B}}$ was compared with \mathbf{O}_{1} twenty-one times ; \mathbf{I}_{B} with \mathbf{O}_{1} twenty times ; \mathbf{I}_{s} was compared with \mathbf{I}_{l} ten times; and $\mathbf{I}_{\mathbf{B}}$ with \mathbf{I}_{J} thirteen times. Of these last, one comparison appears to
be in error just nine micrometer divisions. As this is a case without a parallel, it is assumed that one of the micrometers was read ten divisions in error, and this comparison is rejected in getting the mean result.

Tables I., II., III., IV., contain the comparisons, with the correction for temperature to reduce the differences of length to what they would be at 62°.
I.

Date.	Temp.	I_{6}	I_{s}	Difference of Length in Micrometer Divisions.		$\begin{aligned} & \text { Cor- } \\ & \text { rection } \\ & \text { for } \\ & \text { Temp. } \end{aligned}$	$\mathrm{I}_{8}-\mathrm{I}_{5}$
1865.							
June 5	60.16	$123.68 h+129.12 k$	$67 \cdot 72 h+74 \cdot 98 k$	$55 \cdot 96 h+54 \cdot 14^{k}$	87.77	-0.68	87.09
	60.57	$117.63 h+128.10 k$	$72.87 h+63.93 k$	$44 \cdot 76 h+64 \cdot 17 k$	86.87	-0.53	$86.3+$
	60.68 60.95	$119.42 h+122.97 k$ $123.30 h+117.83$	$68 \cdot 47 h+67.15 h$ $60.45 h+59.98 k$	$50 \cdot 95 h+55.82 k$ $53.85 h+5.85 k$	85.12 80.05	-0.49	8.63 88.66 8.64
	60.95 61.12	$12.3 .30 h+117.83 h$ $119.48 h+120.18$	$69.45 h+59.98 k$ $67.97 h+58.73 k$	$53 \cdot 85 h+57 \cdot 85 k$ 51.51	89.05	-0.39 -0.3	88.66 8.74
	61.12 61.30	$119.48 h+120.18 h$ $115.42 h+118.77$	$67.97 h+58.73 k$ $69.30 h+56.28 k$	51.51 $46.12 h+61.45$	90.07 86.61	-0.33 -0.36	89.74 86.35
	61.30 61.44	$115.42 h+118.77 h$ $118.55 h+116.13$	$69 \cdot 30 h+56 \cdot 28 k$ $6 \mathrm{I} \cdot 52 h+63.88 k$	$46 \cdot 12 h+62.49 k$ $57.03 h+52.25 h$	86.61	-0.26	86.35 86.90
	61.44 61.64	$118.55 h+116.13 h$	$61 \cdot 52 h+63 \cdot 88 k$ $59.23 / 24.51 k$	$57.03 h+52.25 k$ $62.45 h+41.54 k$	87.11 82.87	-0.21	86.90 8.74
	61.64 62.26	$121.68 h+106.05 k$	$59 \cdot 23 h+64.51 k$ $44 \cdot 25 h+65.33 k$	$62.45 h+41.54 k$ $57.70 h+51.07 k$	82.87 86.70	-0.13 +0.10	
" 7	62.26 62.38	$101.95 h+116.40 h$ $103.47{ }^{1} 13.42 k$	$44 \cdot 25 h+65.33 k$ $52.92 h+56.58$	$57.70 h+51.07 h$ $50.55 h+56.84 k$	86.70 85.62	+ 0.10 +0.14	86.80 8.76
	62.38	$103.47 k+113.42 k$	$52 \cdot 92 h+56 \cdot 5^{8} k$	$50 \cdot 55 h+56 \cdot 84 k$	85.62	+0.14	85.76

Mean Temperature $61^{\circ} \cdot 25$.

II.

Date.	Temp.	Ib	$\mathbf{I}_{\text {B }}$	Difference of Length in Micrometer Divisions.	Equivaleuts in Millionths of a Yard.	Correction for Temp.	$\mathrm{I}_{8}-1_{6}$
1865							
June 8	62.68	$243.37 h+234.03 k$	${ }^{87} \cdot 10 h+104 \cdot 45{ }^{k}$	$156 \cdot 27 h+129 \cdot 5^{8} h$	227.84	- 7.63	
	62.74	$240 \cdot 00 h+236.00 h$	$87.50 h+103.87 h$	$152 \cdot 50 h+132 \cdot 13 k$	226.87	-8.31	218.56
+	62.81	$235 \cdot 18 h+241 \cdot 70 k$	$98 \cdot 43 h+90.68 k$	$136.75 h+151.02 h$	229.43	9.09	$220 \cdot 34$
"	62.89	$237.42 h+237.22 h$	102.73h+86.13 ${ }^{\text {a }}$	$134.69 h+151.09 h$	227.85	- 9.99	217.86
" ${ }^{\prime} 9$	62.93 63.06	$242.85 h+231.13 k$ $243.62 h+228.43 k$	$86.90 h+99.47 k$ $94.17 h+89.32 k$	$155 \cdot 95 h+131.66 h$ $149.45 \mathrm{~h}+139.11$	$\begin{aligned} & 229.24 \\ & 2.20 .02 \end{aligned}$	- 10.44	218.80 218.12
	63.06 63.11	$243 \cdot 62 h+228 \cdot 43 k$ $236 \cdot 10 h+234.38$	$94 \cdot 17 h+89 \cdot 32 k$ $92 \cdot 37 h+89 \cdot 37 h$	$149 \cdot 45 h+139 \cdot 11 h$ $143 \cdot 73 h+145 \cdot 01 h$	230.02 230.18	- 12.46	
	63.19	$229.97 h+241.80 k$	$87.98 h+93.47^{h}$	$141.99 h+148 \cdot 33^{h}$	231.45	- $13 \cdot 36$	218.09
" "	63.29	$225 \cdot 08 h+245 \cdot 93 k$	$92 \cdot 97 h+87.48 k$	132.11 $h+15{ }^{8} \cdot 45^{\prime}$	231.67	- 14.48	217.19
	63.41	$232 \cdot 75 h+237.78 k$	$92.81 h+85.20 k$	$139.94 h+{ }^{1} 52.58 h$	233.21	- 15.83	217.38
, 10	63.64	$241.77 h+226.82 h$	$83.63 h+85.62 k$	$158 \cdot 14{ }^{1} h+141 \cdot 20 h$	$23^{8.60}$	-18.41	$220 \cdot 19$
	63.76	$236 \cdot 38 h+230 \cdot 22 h$	$89 \cdot 10 h+87 \cdot 40 k$	$147 \cdot 28 h+142.82 h$	231.26	-19.76	211.50
	63.84	$234 \cdot 53 h+231.75 k$	$78 \cdot 43 h+87.75 k$	$156 \cdot 10 h+144.00 k$	$239 \cdot 22$	-20.66	218.56

Mean Temperature $63^{\circ} \cdot 18$.
III.

Date.	Temp.	O_{1}	$\mathrm{I}_{\mathbf{S}}$	Difference of Length in Mierometer Divisions.	Equivalents in Milionths of a Yard.	Correction for 'Temp.	$8_{s}-S_{1}$
18							
June 14	64	$193.93 h+201.25 k$	$169 \cdot 18 h+149.55 k$	$24 \cdot 75 h+51 \cdot 70 h$	60.99	+0.8	61.86
	$64 \cdot 28$	$195 \cdot 35 h+202 \cdot 38 k$	$158.92 h+162.62 h$	$36 \cdot 43 h+39 \cdot 76 h$	60.74	$+0.85$	61.59
15	64.07	$202.45 h+198.83 k$	$165 \cdot 40 h+161 \cdot 48 h$	$37 \cdot 05 h+37 \cdot 35 k$	59.31	+0.77	60.08
" ,	$64 \cdot 13$	$200 \cdot 37 h+201.65 k$	$165.23 h+159.98 h$	$35 \cdot 14 h+41.67 h$	61.24	+0.79	62.03
" ,	$64 \cdot 17$	$200 \cdot 3^{8 h}+198 \cdot 70 k$	167.92 $h+156 \cdot 10 h$	$32 \cdot 46 h+42 \cdot 60 h$	59.85	+0.81	60.66
	$64 \cdot 20$	203.90h + 198.45k	$161 \cdot 08 h+162 \cdot 58 h$	$42.82 h+35.87 h$	$62 \cdot 72$	+0.82	63.54
	64.13	$199.70 h+206.08 k$	$162.92 h+163.08 k$	$36 \cdot 78 h+43.00 h$	63.61	+0.79	$64 \cdot 40$
	$64 \cdot 13$	$194 \cdot 75 h+211.22 k$	$164.48 h+161.58 h$	$30.27 h+49.64 k$	63.73	+0.79	$64 \cdot 52$
" "	64.09	$198.08 h+204.35 k$	$160.93 h+163.92 h$	$37 \cdot 15 h+40 \cdot 43 h$	61.85	+0.78	62.63
" ${ }^{\prime \prime}$	$64 \cdot 11$	$197.83 h+205 \cdot 43 k$	$163 \cdot 40 h+161 \cdot 32 k$	34.43 h + 44.11 h	62.63	+0.78	$63 \cdot 41$
	$63 \cdot 77$	$213.93 h+203.53 k$	$170 \cdot 50 h+168.35 h$	$43 \cdot 43 h+35 \cdot 18 h$	62.65	+0.66	$63 \cdot 31$
" ,	63.68	207.12h+214.52k	$171.82 h+168.78 k$	$35 \cdot 30 h+45 \cdot 7+h$	64.62	+0.62	$65 \cdot 24$
" "	63.61	$209.57 h+212.63 k$	$164.35 h+179.12 h$	$45 \cdot 22 h+33 \cdot 51 h$	$62 \cdot 74$	+0.60	$63 \cdot 34$
, "	63.59	$212.70 h+213.82 k$	$165.82 h+180 \cdot 10 h$	$46 \cdot 88 h+33 \cdot 72 h$	$64 \cdot 23$	+0.59	64.82
, ,	63.55	202.77h+219.92k	164.62 $h+180.77 h$	$3^{8 \cdot 15} h+39 \cdot 15 h$	$6 \mathrm{I} \cdot 62$	+0.58	$62 \cdot 20$
	$63 \cdot 46$	$206 \cdot 3^{8 h}+22 \mathrm{I} \cdot 80 h$	$168.78 h+179.82 h$	$37 \cdot 60 h+41 \cdot 98 h$	$63 \cdot 45$	+0.54	63.99
" 19	$62 \cdot 35$	$219.52 h+23 \mathrm{I} \cdot 42 h$	$190 \cdot 45 h+176 \cdot 07 k$	$29.07 h+55 \cdot 35 h$	$67 \cdot 34$	+0.13	67.47
" ,	$62 \cdot 35$	$216.63 h+226.03 h$	$192 \cdot 75 h+172.82 k$	$23.88 h+53 \cdot 2 \mathrm{I} h$	6 I .50	+0.13	61.63
", "	$62 \cdot 34$	$221.60 h+224.48 h$	$186.28 h+179.70 h$	$35 \cdot 32 h+44 \cdot 78 k$	63.87	+0.13	64.00
, "	$62 \cdot 31$	$226 \cdot 10 h+219 \cdot 20 h$	$183.00 h+184.30 k$	$43 \cdot 10 h+34 \cdot 90 k$	$62 \cdot 17$	+0.12	62.29
	62.19	$230.88 h+222.92 k$	$184.27 h+187.00 k$	$46 \cdot 61 h+35 \cdot 92 k$	$65 \cdot 78$	+0.0')	65.85

Mean Temperature $63^{\circ} \cdot 56$.
IV.

Date,	Tenp.	\mathbf{O}_{1}	$!_{\text {B }}$	Difference of Length in Micrometer Divisions.		Correction $\xrightarrow[\text { for }]{\text { formp. }}$	${ }_{B}-\mathrm{O}_{1}$
1865. June 12					226.14	$-28 \cdot 18$	
		$26+82 h+263.63 h$	$128.32 h+116.62 k 136.50 h+147.01$			$\mid-27.90$	
	64.51	$261.50 h+265.95 h$	$120.00 h+130 \cdot 75 k$	$141 \cdot 50 h+135 \cdot 20 h$	220.57	-28	1192.39
	$64 \cdot 48$	$254 \cdot 12 h+273.87 h$	124	$129 \cdot 35 h+150 \cdot 59$	223.19	-27.	'95.35
	64.50	$260 \cdot 22 h+267.43 h$	$119.63 \hat{h}+129$	140.59 h+137.85 h	$22 \mathrm{I} \cdot 95$	-28.	193.88
	$64 \cdot 44$	$264 \cdot 12 h+265 \cdot 98 k$	$127.28 \grave{h}+122$	$136.84 h+143.68 k$	223.64	-27.	196.25
" 13	$64 \cdot 17$	$267 \cdot 15 h+269.60 k$	k 128.13 $h+130.57 h$	$139.02 h+139.03 k$	221.66	-24	197.30
	64.07	$266.95 h+273.13 k$	$132.88 h+130 \cdot 30 h_{1}$	$134.07 h+142.83 k$	220.75	-23	197.51
	64.04	$263.50 h+275.95 k$	${ }_{126 \cdot 92 h+139 \cdot 12 k}$	$136.58 h+136.83 k$	217.96	-22	195.06
	64.04	$265.88 h+274.44 h$	$130 \cdot 12 h+134 \cdot 78$	$135 \cdot 76 h+139.66 k$	219.57	-22	196.67
, 20	60.67	$282.60 h+290.68 k$	$k \mid 13$	$112.87 h+116.20 h$	182.61	+14	$197 \cdot 54$
	60.65	$283 \cdot 53 h+289 \cdot 58 k$	$\begin{array}{l\|l} k & 169 \cdot 73 h+174 \cdot 48 h \\ 167.98 h+179 \cdot 42 h \end{array}$	$115.55 h+110.16 h$	179.92	+15	195.08
	60.72	$290 \cdot 70 h+280 \cdot 53 k$	$\begin{aligned} & 167 \cdot 98 h+179 \cdot 42 h 1 \\ & 167 \cdot 77 h+178 \cdot 30 k \end{aligned}$	$22.93 h+102.23 h$	179.46	+14	193.83
	60.81	$283 \cdot 82 h+284 \cdot 82 h$	(167.77h+178.30 h	$115.95 h+110.64 h$	180.62	+13	193.98
	60.99	$281.37 h+286.95 h$	$k \mid 167$	$14.64 h+116.08 k$	183.93	+ 11	$195 \cdot 27$
	61	$280 \cdot 88 h+281.77 h$	h $\begin{aligned} & 166.73 h+ \\ & 165.90 h+\end{aligned}$	$4.98 h+118.25 k$	185.93		$195 \cdot 36$
" 21	6 I .	$274.03 h+279.53 k$	$k \left\lvert\, \begin{aligned} & 165 \cdot 90 h+1{ }^{\text {a }} \text { (}\end{aligned}\right.$	$13.51 / 2+121.18 k$	187.10	+ 6.62	193.72
	61.49	$274 \cdot 50 h+275 \cdot 70 h$	$h 155.92 h+159.07$	$118.58 h+116.63 h$	187.50	+ $5 \cdot 7$	193.23
	61.60 6.68	$271 \cdot 53 h+281 \cdot 53 k$			190.66 189.93		$195 \cdot 15$
	61.	$274 \cdot 40 h+277 \cdot 2.5 h$	$153.97 h+1.59 .42 h 120 \cdot 43 h+117.83 h \mid$		189.93	+ 3 : 5	$193 \cdot 52$

[^7]
2.

The mean of the quantities in the last column of Table 1. is 86.50 , learing the following errors:-

Date.	Error.
$\begin{gathered} 1865 . \\ \text { June } 5 \end{gathered}$	
" "	-0.16
" ${ }^{\prime}$	+ 1.87 $+\quad 2.16$
" ${ }^{\prime}$,	$+\quad 2.16$ $+\quad 3.24$
	-0.15
" "	+ 0.40
" ${ }^{\prime \prime}$	a +0.76 $+\quad 0.30$
", "	+0.30 $+\quad 0.74$

the sum of the squares of which is 33.99 . Hence the probable error of the mean is

$$
\pm 0.674 \sqrt{\frac{33.99}{90}}= \pm 0.415
$$

and therefore

$$
\begin{equation*}
\mathbf{I}_{\mathrm{B}}-\mathbf{I}_{b}=86.50 \pm 0 \cdot 41 \tag{2}
\end{equation*}
$$

The mean of the quantities in the last column of Table II. is (omitting the last comparison but one, for the reason specified above) $218 \cdot 58$, leaving the following crrors :-

Date.	Error.
$\begin{gathered} 1865 . \\ \text { June S } \end{gathered}$	+ 1.63
, ,	-0.02
,	+ 1.76
" "	$-\quad 0.72$ $+\quad 0.22$
" ${ }^{\prime \prime}$	-0.46
" ,	- 0.86
"	- 0.49
" "	-1.39 -1.20
" 10	-1.20 $+\quad 1.60$
	- 0.02

The sum of the squares of which is $13 \cdot 48$. Therefore the probable error of the mean is
consequently

$$
\pm 0.674 \sqrt{\frac{13.48}{I 32}}= \pm 0.216
$$

$$
\begin{equation*}
\mathbf{I}_{\mathrm{B}}-\mathbf{I}_{b}=218.58 \pm 0.22 \tag{3}
\end{equation*}
$$

The mean of the quantities in the last column of Table III. is $63 \cdot 28$, leaving the following system of errors:-

Date.	Error.	Date.	Error.
$\begin{aligned} & 1865 . \\ & \text { June } 14 \end{aligned}$	- 1.42	$1865 .$ June 17	+ 1.96
	- 1.69	:, ,	+ 0.06
" 15	- 3.20	" "	+ 1.54
" "	- 1.25	"	- 1.08
" "	- 2.62	" "0	+0.71
" ${ }^{\prime}$	+ 0.26	" 19	+ 4.19
" 10	+ 1.12	"	- 1.64
" "	+ 1.24	"	+ 0.72
"	-0.65		-0.98
$\text { " } \quad 17$	$\begin{aligned} & +0.13 \\ & +0.03 \end{aligned}$	"	+ 2.57

The sum of the squares of which is $63 \cdot 06$. Hence the probable error of the mean is

$$
\pm 0.674 \sqrt{\frac{63.06}{420}}= \pm 0.261 ;
$$

consequently

$$
\begin{equation*}
\mathbf{I}_{\mathrm{B}}-\mathbf{O}_{1}=63 \cdot 28 \pm 0.26 \tag{4}
\end{equation*}
$$

Again; the mean of the quantities in the last column of Table IV. is $195 \cdot 36$, leaving the following system of errors :-

Date.	Error.	Date.	Error.
1865. June 12	+ 2.60	1865. June 20	+ $2 \cdot 18$
	+ 2.71		- 0.28
," ,	- 2.97	,, "	- 1.53
" "	- 0.01	,.	-1.3^{8}
" "	- 1.48	" "	- 0.09
" ${ }^{\prime \prime}$	$+\quad 0.89$ $+\quad 1.94$	${ }_{21}^{\prime \prime}$	+0.00 $+\quad 1.64$
", 13	$+\quad 1.94$ $+\quad 2.15$		1 $-\quad 1.64$ $-\quad 2.13$
", "	- 0.30	" "	- 0.21
	+ 1.31	" "	- 1.84

The sum of the squares of which is 55.84 . Therefore the probable error of the mean is

$$
\pm 0.674 \sqrt{\frac{55.84}{380}}= \pm 0.258 ;
$$

consequently

$$
\begin{equation*}
\mathbf{I}_{\mathrm{B}}-\mathbf{O}_{1}=195.36 \pm 0.26 \tag{5}
\end{equation*}
$$

The probable errors of these results should be slightly increased on account of the probable errors of the adopted rates of expansion. The difference, however, is doubtless insensible, except in the case of \mathbf{I}_{b}, and even here the nearness of the mean of the temperatures to 62° will reduce the residual uncertainty to an insignificant amount.

4.

The four results - equations (2), (3), (4), (5) -at which we have arrived are not independent; that is to say, there is a relation amongst them which but for errors of observation should hold good. For instance, (4) - (2) and (5) - (3) give

$$
\begin{aligned}
& \mathbf{I}_{b}-O_{1}=-23 \cdot 22 \ldots . \cdots \cdot(4)-(2) \\
& \mathbf{I}_{b}-O_{1}=-23 \cdot 22 \ldots . \cdot(5)-(3)
\end{aligned}
$$

and thus by a rare chance the four results are perfectly harmonious.
Again, it is equally remarkable that the relation of I_{b} and \mathbf{O}_{1}, here brought out, agrees all but precisely with the mean of the results of the comparisons between these bars in 1831 and 1846 as shown in equations (1).

This is all the more satisfactory when we remember that I_{L} has been subjected to a good deal of travelling, having been used in India during the interval 1831-1846, and subsequently sent from this country to Russia, where M. Struve compared it with several other geodetical standards.

XXI.

id ETERMINATION OF THE LENGTH OF THE RUSSIAN DOUBLE TOISE

P.

1.

This bar is of wrought iron, an inch and a quarter square in section. It is an cadmeasure (\dot{a} bouts) ; the terminal cylinders being of hard steel, and presenting at cither end a small convex surface, a quarter of an inch in diameter for the contacts. The radius of curvature of these extreme surfaces is about $1 \cdot 75$ inch. The bar is contained in a wooden case 4.25 inches in breadth and 5 inches deep (external measurements), from which the ends of the bar project. The bar is supported at $\frac{1}{4}$ and $\underset{4}{4}$ of its length, not on rollers, but by passing through brass collars affixed to the box. One of the collars is round, the other square. In order to fit the circular collar, the bar is at that part turned in the form of a cylinder. This collar is in two pieces; the upper semicircle can be pressed down by means of a clamping screw, which projects through the box above, and so the bar is prevented from sliding longitudinally. The square collar fits the bar without play and without tightness. Two thermometers are let into the bar near the two points of support, they project upwards through the top of the box, their tubes being vertical. Each is protected by a small wooden case screwed to the bar box; this case has a glass front which is firther covered when the thermometers are not being read by a (vertically) slidiug cover. The whole length of the bar is carefully wrapped up in a cotton covering, and the space between the bar and its box is also entirely filled in with woollen material. 'Thus the bar is well protected from sudden changes of temperature.

In Plate X, figures 1, 2,
aaa is the box containing the bar.
$d d$. are the projecting extremities of the bar.
ee. are the covering boxes of the thermometers $t t$.
$l l$. are handles by which the box is carried.
$c c$. are iron plates fastened to the bottom of the box, and by which it rests on the supports.
σ. is the clamping screw by means of which the bar is held firmly in the circular collar.
In order to support the box $a \alpha a$ properly during the comparisons of this bar with OT, a plank ff was constructed of mahogany, ten feet in length and eight inches in breadth. This plank rests immediately (figure I) upon the carriages gg. Towards the extremities of the plank it is fitted with two (vertically) sliding brass frames $k k l l$ seen in detail in
figures 2, 3. $k k$ are brass cylindrical rods connected by the cross pieces $l l$ above and below, forming a rigid rectangle; upon the upper cross piece, which is provided with flanges, the bar box rests. Motion in a vertical direction is communicated to this frame $k k l l^{\prime}$ by means of the steel rod $h h$ which has a collar i working in a brass plate screwed to the upper surface of the mahogany plank. The thread of a screw which is cut on the upper end of $h h$ works in the upper piece l, so that on turning the milled head h below the frame, $k k l^{\prime} l^{\prime}$ is moved up or down, all the weight being borne by the collar i of the steel rod.

In order to secure a vertical motion free from all shake, the steel rod is held below, near the milled head, by a strong bent plate of brass $m m$ screwed to the lower surface of the plank. Thus it appears that when the bar-box is held upon these two sliding frames either end can be raised or lowered with a perfectly steady motion for either levelling or focusing.

Figure 2 shows one of the microscopes for reading the thermometers. Blocks aa (figure 1) are fastened to the mahogany plank; to these again plates of brass $\beta \beta$ (figures 1,2) are screwed, but so as to admit of each in its own plane revolving round the screw which holds it. The microscopes \hat{o} are as described-at the top of page 7 ; the brass slides on to which they are fitted, slide on to the pieces $\beta \beta$. Thus by the movement of β round the screw which holds it, the microscope δ can be adjusted over the thermometer tube, and by means of its own brass slide the microscope can be brought over the end of the mercurial column so as to get it for observation precisely in the centre of the field.

In order to compare the Russian bar with OT it is necessary to use the contact apparatus. The mode of affixing it will be seen in figure ${ }_{4}$. A strip of mahogany $14 n$, four inches broad, is held fast to the box an by means of the iron rings or bands $r r$ (strips of irou bent into the form of a rectangle of 5 inches by 7 inches) which heve pinching screws ss above; when these screws are loosed, the rings can be taken away. To the strip $n n$ is fixed a block n^{\prime} which has a brass plate $p p$ screwed to its upper surface. This brass plate carries the contact apparatus C. It is held down to it by three vertical screws $u v v$, of which two only appear in the drawing, as two of the three, those two nearest the extremity d of the bar, are in line perpendicular to the bar. These last two screws pass freely through slotted holes in the plate $p p$, and screw into a loose strip of brass q below the plate; a groove being cut out of the mahogany n^{\prime} to admit the piece of brass q. This piece being loose, when the two front screws $v v$ are unclamped it will be seen that the contact piece admits of a movement in azimuth round the third screw u, the motion being communicated to it by means of the antagonistic screws w, of which only one appears in the figure.

2.

In order to compare the bar \mathbf{P} with two lengths of $\mathbf{O T}$, three microscopes were erected on the stone piers, H on the left pier, A on the centre pier, and K on the right pier ; the micrometer head of A to the left. The bar OT (in its box) was then placed on the carriages and brought under H and A ; it (the bar) was then most carefully levelled, and the microscopes adjusted to perfect focus with their zeros over the terminal lines of the toise, the axes of the microscopes being at the same time made perfectly vertical. The toise was then removed (by the running of the carriages along the rail) to under A and K. The microscope A remaining untouched, the bar is again in this position made truly level, while its left line is at the same time kept in focus of the microscope A. Then K is adjusted as to focus and verticality over the right line of the toise. Now supposing these operations accurately performed, the foci of the three microscopes will be found in one horizontal plane, and it remains to bring them into alignment or into a vertical plane. This is done by stretching a very fine thread of india-rubber to its full extent, and fixing its extremities so that
the thread is bisected by the cross-hairs of the outer microscopes H and K . While the thread remains in this position the middle microscope is adjusted by the movement of its cast-iron stand until the cross-hairs bisect the thread.

These adjustments are then gone through a second time and perfected.
The height of the box of the Russian bar renders it necessary to remove the middle microscope A before that bar can be placed under H and K. This makes it needful that we be certain that if the microscope A be removed from its gun metal tube or holder (by releasing the springs behind) and returned again to it, it will take almost exactly the same position it had before. Repeated trials proved satisfactorily that this could be relied on within five divisions or so, which is abundantly accurate. For if the microscope, or rather the point bisected by its cross, should be out of place as much as a thousandth of an inch, or 25 divisions in a transverse direction, such displacement would not produce any sensible error in the comparisons; while a displacement in the direction of the bar's length is quite immaterial.

Another adjustment is that the transverse wires of the micrometers, perpendicular to the motion of the screw, must be perpendicular to the length of the toise, or parallel to the transverse lines on the platinum disks. Thus in the microscopes H and K we have the means of adjusting to the proper position in azimuth each of the contact pieces, so that the transverse lines shall be perpendicular to the leugth of the double toise.

It was assumed at first that the proper points of the terminal disks of the double toise at which the contacts should be made, were then centres; and several comparisons were made before this was found to be an error. For the intentional length of the bar is doubtless the distance between those tangent planes to the slightly convex disks which are perpendicular to the length of the bar,-or, the bar being horizontal, the vertical tangent planes which are also perpendicular to the bar's length. Now from the nature of the construction of the contact apparatus, as has been already explained, when the two parts are mounted together on their brass stand, the needles made precisely level, and the semi-cylinders at the same height, the contact of the convex surfaces is exactly half-way between the upper and lower horizontal surfaces of the semi-cylinders, and here the common tangent plane is by construction vertical. When the contact pieces are brought into contact with the disks of the toise, the needles being accurately levelled, and the contact made at the centre of the disks, the points of contact on the semi-cylinders are above the mid-depth, that is, are sensibly nearer the upper than the lower horizontal surface of the semi-cylinders, indicating that the tangent plancs at the centres of the disks are not vertical, but converge (downwards), and that very nearly equally at the two extremities. In fact the proper point of contact on either of the disks- that is when the contact is precisely balf-way between the upper and lower horizontal surfaces of the semi-cylinders-is above the centre of the disk, at the distance of about one tenth its diameter. As this determination is one of great importance it was considered necessary to have some separate and independent test, and to effect this a piece of sbeet brass was cut out in the shape of a right-angled isosceles triangle; the edges containing the right angles were made perfectly straight, and the angle a perfect right angle, so far as could be ascertained by any mechanical tests. The brass plate $p p$ (figure 4) was then made perfectly level by means of the small level of the contact apparatus, and one edge of the brass triangle being made to rest upon the horizontal plane, the other edge, truly vertical, was brought against the disk. The point of contact was precisely as indicated by the contact of the semi-cylinder. Further, on examining with a microscope the bright surface of the disks, there is, at one end unmistakeably, an appearance of wear, as though the contact had been habitually at a point above the centre, and dividing the vertical diameter in the proportion of about four to six.

There remains of course some little uncertainty as to the precise point where the contact should be made, but this within very narrow limits; and between these limits the contact was always kept, though frequently varied during the observations.

The observations have beeu made, in about equal proportions, by three observers. In each comparison two observers took part, the second observer B in each case also booking all the readings.

The manner of making a comparison will be best understood if the operations be tabulated thus:-

Order.	Observer.	Nature of Operation	
]	B	Reads thermometers of P]	
2	A, B	Adjust P under H and K by the transverse screws of carriages and elevating or focus screws ($h \mathrm{fg} .1$)	P
3	A	Reads H twice and K twice	
4	B	Reads the thermometers ngain	
F	A, B	Renove P from the cirriages and substitute O T, adjusting it under H and A .	
${ }_{6}$	B	Reads thermometers of OT	
7	A	Reads if twice and A twice	OT
8 9	A, B	Run OT under A and K and adjust for observation	
9	A	Reads A twice and K twice	
10	A	Reads A twice and K twice... ... \ldots..	
11	A, B	Run OT under H and A and adjust for observation ...	0 T
12	A	Reads H twice and A twice	07
13	B	Reads thermometers of O T	
14	A, B	Remove $\mathbf{O T}$ from carriages and substitute \mathbf{P}, adjusting it under H and K	
15	A	Draws back needles of the contact apparatus from contact, corrects? the levelling of needles, and renews the contact at each end	
16	B	Reads thermometers of \mathbf{P}...	P
17 18	A	Reads H twice and K $\mathbf{t w i c e}$... Reads thermometers of \mathbf{P}	

N.I3.-P is left under the microscopes until next comparison.

No mention is made here of the removal aud replacement of the microscope A. At the commencement of the operations, the bar \mathbf{P} being under the microscopes, \mathbf{A} is of course away.

Its replacement forms part of the operation 5 , immediately on the removal of \mathbf{P}, and its removal forms part of the operation 14 , immediately before the removal of $\mathbf{O T}$ from the carriages.

The operations above specified occupy from 20 to 25 minutes. It will be seen that they involve two measurements of \mathbf{P}, and two measurements of $2 \mathbf{O T}$.

The subjoined table shows the readings as recorded in one comparison or visit.
20th Declember 1865. 12h. 40m.

$\begin{gathered} \text { Thenum. } \\ \text { C. } \end{gathered}$	P		OT		OT		Thermas. F.
	H	K	H	A	A.	K	
$\stackrel{\circ}{7} 28$	$97^{8 \cdot 1}$	$984^{\circ} \mathrm{I}$	1115.2	$26 \cdot 7$			$\stackrel{0}{4} \cdot 8.83$
$7 \cdot 16$	$978 \cdot 3$	$984 \cdot 1$	$1114{ }^{\circ} 7$	$26^{\circ} 4$			$44 \cdot 80$
$7 \cdot 26$					$26 \cdot 9$	1124°	
$7 \cdot 13$					27°	1123.5	
7.25					$27^{\circ} 1$	$1123^{\circ} \mathrm{O}$	
7.12					$27^{\circ} 1$	1123^{1}	
$7 \cdot 26$	$986 \cdot 0$	977 ${ }^{1}$	1116.4	28.0			$44 \cdot 85$
713	$986 \cdot 9$	9773	1116.9	27.5			44.82

No. 99.
Observers: Capt. Clarke, R.E., Coıporal Compton, R.E.

We may here recount the different adjustments which require frequent renewal in order to exclude constant error.
I. The axes of revolution of the thrce microscopes to be vertical.
2. These axcs to be in one vertical plane.
3. The outer foci of the microscopes to be in a horizontal plane.
4. Ordnance Toise to rest symmetrically on its rollers.
5. The steel needles of contact apparatus to be horizontal.
6. The point of contact to be at mid-depth of semi-cylinders.
7. The point of contact to be half-way between the parallel longitudinal lines of the contact apparatus, and so the tangent plane at the point of contact parallel to the transverse line on contact apparatus, or perpendicular to the bar's length.
8. Each piece of the contact apparatus to be level transversely.
9. No particle of dust to intercept contacts.
10. The bars to be adjusted to sharp focus.

These different adjustments were examined and renewed as often as practicable, so that from no one of them, nor any combination of them, can a constant error conceivably arise.

3.

In order to verify our received value of the interval between the lines on the contact apparatus, a series of measures was made precisely similar to that recorded at page 144. The results were as follows :-

September 8th, 1865.

Microweter \mathbf{H}.			Micrometer K.		
Left Line.	Right Jine.	1)ist.	I.eft Line.	Right Line,	Diff,
$1.350 \cdot 30$	$639 \cdot 63$	710.67	$646 \cdot 33$	$135.3 \cdot 47$	707.14
1350.67	$639 \cdot 73$	710.94	$6+3 \cdot 70$	1352.13	$708 \cdot 43$
1350.53	$639 \cdot 43$	711.10	$6+4 \cdot+3$	1353.00	708.57
1349-33	$637 \cdot 97$	711.36	$642 \cdot 10$	1350.67	$708 \cdot 57$
1354.90	644.00	$710 \cdot 90$	$6+1.00$	1349.37	$708 \cdot 37$

The mean of the measures by H is $710 \cdot 99$, which in millionths of a yard $=565 \cdot 72$. The mean of the measures by K is $708 \cdot 22$, which in millionths of a yard $=565.65$. These may be considered very satisfactory checks upon the value, 565.62 of n, equation 17), page 133 .

4.

The thermometers of the Russian bar are divided to degrees centigrade. The scale is very small, 70° of the scale being exactly 3 inches in length, so that each degree is only $\frac{9}{70}$ of an inch in length. One degree Fahrenheit on this scale would only $=\frac{3}{70} \cdot \frac{3}{0}=\frac{1}{12}$ inch, whilst in the thermometers used in our own bars one degree on the scale is about? of an inch-more than eight times as large. This renders it necessary that the errors of the thermometers should be very accurately obtained, and that they should he read very often in the comparisons. For, according th the determination of M. Struve, at page +9 of the first volume of his account of the Russian Arc of Meridian, the absolute expansion of \mathbf{P} for one degree centigrade is $11.253 \pm .017$ millionths of its length, or which is the same thing 26.65 I millionths of a jard for each degree Fahrenheit. Consequently, an error in the reading of the thermometers of an inch on the scale would be equivalent to an error
 the accuracy of the readings of the thermoncters and the determination of their errors.

These thermometers, which are numbered 7 and 12 , were compared with the standards 3241 and 4142 both before and after the comparisons at the vicinity of the normal temperature, and in order to show the degree of accuracy attainable in reading the thermoneters we shall here give the results of the comparisons. The Russian thermometers were suspended in the water trough, their tubes being accurately vertical as proved by a plumb line, and their bulbs at mid-depth of the water, while the standards as usual were in a horizontal position. In order to allow of the Russian thermometers being properly read, a rectangular aperture was cut in the side of the water trough, and this filled with a sheet of plate glass. A microscope was theu mounted in a horizontal position for reading these thermometers : the manner of mounting the microscope was the same as in Fig. 2, Pl. X., described already. In order to render the observing through this microscope possible, the water trough was mounted upon trestles 14 inches high. The standards were read as usual with the long vertical microscope. It was found that the therwometers 7 und 12 could be read with tolerable certainty, and that an error of half a tenth of a degrce in a single reading was scarcely probable.

We now give the results of the observations:-

Date.	Russinn.		ards.		ions		Corrected Readings of		True Temperature		rs of	
	7	12	3241	4142	3241	4142	3241	412			7	12
$\begin{gathered} 1865 . \\ \text { July } 17 \end{gathered}$		$14 \cdot 968$			-.59	-.09	$58^{\circ}+235^{\circ}+03$		$5^{8 \cdot}+33^{1}+{ }^{\circ} 67+4$			
	$15^{\circ} \mathrm{O}+9$		$59^{\circ} .0135^{8 .}+93$						$+29+$+.18+18			
," ,	17.196	17.073	63.004 63.188	62.511 62.601	-.60	-. 11	$62 \cdot 40$ 63	$62 \cdot+01$		62.403 16.891		$\begin{aligned} & +\cdot 305 \\ & +\cdot 380 \end{aligned}$
", "	17.324 17.951	17.139 17.845	$63 \cdot 108$ 64.265	62.601 63.795	-. 60	-. 11	62.50862 .491	$62 \cdot 491$ 63.685 5.	62.500 6.67	$16 \cdot 9+4$	+380 +357 +35	+.19.5
" "	17.951 18.704	17.845 18.571	$64 \cdot 265$ 65.63^{8}	$63 \cdot 795$ $65 \cdot 136$	-.61	--11	$65 \cdot 0.8$	65.020	6.670 6.027	18.348	+ 357	+2.51 +223
Oct. 3	15.216	15.113	59.369	58.853	-. 59	-. 09	58.779	$5^{8.763}$	$5^{8.771}$	$1+87.3+3+3$		+ $2+\mathrm{c}$
"	16.051	15.983	60.97 I	60.453	-. 59	-. 10	$60 \cdot 3^{81}$	$10 \cdot 353$$61 \cdot 270$	60.367 (15.759		+-292	+ $22+$
"	16.658	16.510	61.855	61.370					$\begin{aligned} & 61 \cdot 26 \\ & 62 \cdot 14 \end{aligned}$	$\begin{aligned} & 16 \cdot 25 \\ & 16 \cdot 7+9 \end{aligned}$	+ + 01	+253+263+29
"	17.093	17.010	62.748	62.260	- 60	-.r1	$\begin{aligned} & 6 \cdot 1+8 \\ & 63 \cdot 11 \end{aligned}$	62.150 63.115			+ $3+4$	
"	17.674	17.528	63.723	$63 \cdot 225$	-61-61	-.11-11		63.11563.985	6.11463.976	17.286$17.76+$	$+33^{88}$	$\begin{aligned} & +3+2 \\ & +-259 \end{aligned}$
	18.108	18.023	$64 \cdot 57^{8}$	$6+.095$			$\left\|\begin{array}{c} 63 \cdot 11 \\ 63 \cdot 968 \end{array}\right\|$				+ 3 H	

The second, third, fourth, and fifth columns are the means of the actual readings of the four thermometers; each line is the mean of four comparisons, with the exception of the first two lines, which are each the mean of five comparisons.

Suppose, now, as there is no sufficient evidence to the contrary, that the errors of thermometers 7 and 12 are constant within the range of temperature exhibited in these observations, and that the discrepancies in the last two columns are due to the unavoidable errors of observation; then the error of thermometer 7 is-in degrees centigrade-

$$
+0^{\circ} \cdot 353 \pm \cdot 0067
$$

and the error of 12 is

$$
+0^{\circ} \cdot 239 \pm \cdot 006 t
$$

while the probable error of a single determination in either thermometer (represented by the mean of 8 readings) is about ± 0.22. The mean of the two thermometers should then in the long run give the true temperature with a probable error of $\pm .0046$ of a degree centigrade. This corresponds to a probable error of ± 0.22 of a millionth of a yard in the length of the bar. To this should be added the probable error of the mean of all the absolute temperatures given by the two Standard thermometers in the above observations; but this, being a very much smaller quantity, we neglect.

The errors of thermometers 7 and 12 were also obtained immediately previous to the comparisons at 44°.

5.

We shall now consider the reduction of the observations. In the accompanying diagram

let the dots $Z_{h} Z_{a} Z_{k}$ be the zeros of the microscopes HAKK ; OT OT' the extremities of OT in its two positions. In the first position h and a_{1} are the readings (reduced to the proper unit) of H and A ; in the second position a_{2} and k are the readings, reduced, of A and K. Referring to the table, page $259, l$ and k are the means of the fourth and seventh columns -1000 (the reading of centre of field) reduced, $a_{1} a_{2}$ are the means, reduced, of the fifth and sixth columns. Let also $h^{\prime} k^{\prime}$ be the means - io00, reduced, of the second and third columns. Then we have

$$
\begin{align*}
\mathrm{Z}_{h} \mathrm{Z}_{a} & =\mathrm{OT}+h-a_{\mathrm{t}} \\
\mathrm{Z}_{a} \mathrm{Z}_{k} & =\mathrm{OT}+k+a_{2} \\
\therefore \mathrm{Z}_{h} \mathrm{Z}_{k} & ={ }_{2} \mathrm{OT}+h+k+a_{2}-a_{1} \tag{I}
\end{align*}
$$

Again, when the bar \mathbf{P} is under the microscopes, if $k^{\prime} k^{\prime}$ be the reduced readings of H and K , then σ being the value of the contact space

$$
\begin{equation*}
\mathrm{Z}_{k} \mathrm{Z}_{k}=\mathbf{P}+\sigma+k^{\prime}+k^{\prime} \tag{2}
\end{equation*}
$$

Therefore taking the difference of (1) and (2) and putting \mathbf{T}_{0} for the length of the Ordnance Toise at the observed temperature

$$
\begin{equation*}
\mathbf{P}+\sigma-2 \mathbf{T}_{0}=h-h^{\prime}+k-k^{\prime}+a_{2}-a_{1} \tag{3}
\end{equation*}
$$

which we shall write thus, since $\sigma=565.85$,

$$
\begin{equation*}
\mathbf{P}-\mathbf{2} \mathbf{T}_{0}=n-565.85 \tag{4}
\end{equation*}
$$

Let the length of the Russian bar be expressed generally by the equation

$$
\mathbf{P}=\alpha+\beta(t-62)
$$

and the length of the Ordnance Toise by the equation

$$
\mathbf{T}_{0}=\alpha_{0}+\beta_{0}\left(t_{0}-6_{2}\right)
$$

then

$$
\begin{equation*}
\mathbf{P}-2 \mathbf{T}_{0}=\alpha-2 \alpha_{0}+\beta(t-62)-2 \beta_{0}\left(t_{0}-62\right) \tag{5}
\end{equation*}
$$

where t is the temperature, reduced to Fahrenheit, of the Russian bar, and t_{0} the temperatur of the Ordnance Toise.

For convenience in our subsequent reductions put

$$
\begin{align*}
& \alpha-2 \alpha_{0}=x-312 \cdot 35 \tag{6}\\
& \beta-2 \beta_{0}=y \tag{7}
\end{align*}
$$

Substituting these in (5)

$$
\begin{equation*}
\mathbf{P}-2 \mathbf{T}_{0}=x+y\left(t_{0}-62\right)+\beta\left(t-t_{0}\right)-312 \cdot 35 \tag{8}
\end{equation*}
$$

Subtracting (4) from (8) we get

$$
\begin{equation*}
x+y\left(t_{0}-62\right)+253 \cdot 50+\beta\left(t-t_{0}\right)-n=0 \tag{9}
\end{equation*}
$$

Or putting,

$$
\begin{gather*}
t_{0}-62=f \tag{i0}\\
253 \cdot 50+\beta\left(t-t_{0}\right)-n=k
\end{gather*}
$$

we have finally

$$
\begin{equation*}
x+f y+k=0 \tag{II}
\end{equation*}
$$

Each comparison will supply an equation of this form, and these equations being treated according to the method of least squares, the values x and y are determined, and thence the difference ($\alpha-2 \alpha_{0}$) of the length $\mathbf{P}-2 \mathbf{T}$ 。 when both bars are at 62°.

6.

The results of the different comparisons are shown in the first of the following tables which gives the means of the micrometer readings and the corrected means of the thermometer readings.

The second table contains the different steps of the reduction (which will be understond from the headings of the different columns) up to the values of f and k in equations (10).
I.

that				OT		
	Micrometer Readings.	Temp.	Equiv.	Micrometer Readings.	Micrometer lieadings.	Temp.
1865.		${ }^{\text {C }}$				${ }_{\text {F }}^{\text {\% }}$
Sept. 12	$104 \cdot 73 h+99.85 h$	17.946	$6+30$	$255 \cdot 70 h-3^{8 \cdot 78 a}$	$39 \cdot 18 u+260 \cdot 28 / a$	$6+2 .$
," ,	$94 \cdot 45 h+104 \cdot 48 h$	18.039	$64 \cdot 47$	$24^{8 \cdot 55 h-30 \cdot 40 a ~}$	$30 \cdot 90 a+263 \cdot 30 h$	64.42
"	$100 \cdot 85 h+96 \cdot 10 h$	18.173	$64 \cdot 7 \mathrm{I}$	$255 \cdot 33{ }^{\text {h }}$ - $34 \cdot 73{ }^{\text {a }}$	$35 \cdot 48 a+253 \cdot 80 h$	64.62
13	$102.93 k+99.08 k$	18.137	$64 \cdot 65$	257.13h-26.48a	$27 \cdot 3^{8 a}+257 \cdot 5^{8 h}$	64.47
" "	$94 \cdot 60 h+10+33^{8 k}$	18.172	$64 \cdot 71$	$254.50 \mathrm{~h}-6.40 \mathrm{a}$	$7.60 \mathrm{a}+256.00 \mathrm{k}$	64.66
	$98.90 h+93.88 h$	18.258	64.86	$252 \cdot 48 h-30 \cdot 104$	$30 \cdot 70 a+252 \cdot 30 k$	64.82
14	$106 \cdot 40 h+90.88 k$	18.164	$64 \cdot 70$	$256 \cdot 43 h-41 \cdot 5^{8 \mu}$	$42 \cdot 53^{a}+256 \cdot 70 h$	$64 \cdot 60$
" "	$99 \cdot 23 / 4+98 \cdot 25 k$	18.219	$64 \cdot 79$	$257.23 h-25.53 a$	$26 \cdot 93 a+252 \cdot 18 k$	$64 \cdot 74$
"	$96 \cdot 10 h+99 \cdot 3^{8 k}$	18.283	64.91	250.95% - $28.10 a$	$28 \cdot 18 a+256 \cdot 58 k$	$64 \cdot 81$
" 15	$99 \cdot 75^{h}+117 \cdot 03^{h}$	17.816	64.07	$259.88 h-23.90 a$	$27 \cdot 13^{a}+270 \cdot 00 k$	$63 \cdot 93$
" "	$107 \cdot 2.5 h+108 \cdot 33^{k}$	17.861	$64 \cdot 15$	$262 \cdot 43 h-29.53^{a}$	$29 \cdot 43^{a}+266 \cdot 95^{k}$	$64 \cdot 15$
	$99 \cdot 75^{\prime \prime}+106 \cdot 53^{k}$	17.996	64.39	$259 \cdot 70 /$ - $3^{8 \cdot} \cdot 43^{a}$	$39 \cdot 53^{a}+261 \cdot 13^{k}$	$64 \cdot 39$
" 23	$11+43 h+107 \cdot 85 h$	16.813	62.26	274.10h-41.08a	$43 \cdot 58 a+257 \cdot 50 h$	$62 \cdot 13$
, "	$110.90 h+110.95^{k}$	16.799	62.24	$266.53 / h-3^{6 \cdot 308}$	$37 \cdot 40 a+266 \cdot$ Ioh	$62 \cdot 18$
"	$104 \cdot 08 \%$ + $119.00 h$	16.808	62.25	267.20 l - $40.80 a$	$41 \cdot 48 a+265 \cdot 68 k$	$62 \cdot 17$
25	$128.93 / 4+128.73{ }^{\prime}$	16.018	60.82	$285 \cdot 43 / h-46 \cdot 43 a$	$47 \cdot 05^{a}+275 \cdot 78 h$	60.81
, "	$125.43 h+129.65 k$	16.061	60.91	282.13 h - $39 \cdot 43 a$	$39.53 a+278.65 k$	$60 \cdot 96$
	$127 \cdot 98 h+122 \cdot 28 h$	$16 \cdot 173$	6I.1I	$273.88 h-32.03 a$	$33 \cdot 28 a+280 \cdot 73^{k}$	6I•II
" 26	$124.35 / h+132 \cdot 30 h$	15.95^{8}	60.72	$283.15 h-52.75 a$	$53 \cdot 78 a+279 \cdot 70 k$	60.69
," "	$116 \cdot 68 h+13^{8.33}{ }^{h}$	16.023	60.84	282.23h-26.58a	$26 \cdot 15 \alpha+279 \cdot 50 h$	60.83
	$120.65 h+134.45 h$	16.004	60.81	$270.60 h-30.55 a$	$30 \cdot 28 a+291 \cdot 48 k$	60.85
$\cdots \quad 27$	$126.83 h+133.78 k$	15.819	60.47	$278.50 h-2.48 a$	$2.65 a+288.73{ }^{\text {h }}$	60.49
" ,	$132 \cdot 20 h+130 \cdot 43^{h}$	15.913	60.64	290.43 h - $3^{8.28 a}$	$39 \cdot 28 a+276 \cdot 78 k$	60.68
" \quad "	$125.48 h+133.68 k$	16.007	60.81	$274.65 h-33.00 a$	$33 \cdot 43^{a}+289 \cdot 55^{k}$	60.80
28	$125.13^{h}+143.08 h$	15.77^{6}	60.40	287.10\% - 33.98a	$34 \cdot 50 a+284 \cdot 38 k$	$60 \cdot 37$
, ,	$127.93 h+143.83 h$	15.834	60.50	$288.43{ }^{h}-33 \cdot 20 a$	$32 \cdot 65^{a}+290 \cdot 53^{k}$	$60 \cdot 52$
" ${ }^{\prime}$	$128.25 h+141.83 h$	15.831	$60 \cdot 50$	$284 \cdot 85 h-41 \cdot 48 a$	$41 \cdot 43^{a}+289 \cdot 08 k$	$60 \cdot 52$
29	$135 \cdot 15 h+144.70 h$	I5.661	$60 \cdot 19$	$300 \cdot 00 h-47 \cdot 40 a$	$47 \cdot 4^{8 a}+286 \cdot 83 h$	60.08
" ,	$139 \cdot 60 h+139 \cdot 73 k$	15.698	60.26	$301 \cdot 10 \mathrm{~h}-4^{6 \cdot 93}{ }^{\text {a }}$	$4^{8 \cdot 10 a}+281.55^{h}$	$60 \cdot 19$
	$140 \cdot 10 h+138 \cdot 43 k$	15.709	60.28	$290 \cdot 05^{h}-46 \cdot 30 a$	$45.85^{a}+293.95^{k}$	60.25
Dec. 16	$75 \cdot 25 h+87.65 h$	$6 \cdot 189$	$43 \cdot 14$	$226 \cdot 50 h-14.332$	$14.20 a+215.83 h$	$42 \cdot 94$
18	$63.13 h+84.93 k$	$6 \cdot 538$	43.77	$215.03 / h-13.08 a$	$14.80 a+204.50 k$	$43 \cdot 72$
" "	$64.95 h+76.68 h$	6.641	43.95	209.40h - 7.00a	$8.20 a+203.40 k$	43.99
	$63 \cdot 68 h+7 \mathrm{I} \cdot 53 \mathrm{k}$	$6 \cdot 725$	44.10	205.30h - 15.98a	$15.85 a+205.45 \mu$	44.19
, 19	$82 \cdot 78 h+86 \cdot 30 h$	$6 \cdot 739$	44.13	218.23 - $15.05 a$	${ }_{15} 5.60 a+226.70 k$	44.19
, ,"	$80.85 h+82 \cdot 45 k$	6.816	44.27	$213.60 h-29.93{ }^{\text {a }}$	$30 \cdot 38 a+222 \cdot 18 k$	44.40
)	$80.60 h+80.95 h$	$6 \cdot 920$	$44 \cdot 46$	$218 \cdot 25^{h}-29.48 a$	$29.98 a+214.95 k$	$44 \cdot 58$
90	$78.65 h+88.20 k$	6.835	$44 \cdot 30$	$213.95 h-19.65 a$	$20.133^{a}+230 \cdot 65 h$	$44 \cdot 3^{6}$
", "	$82.33 h+80.65 h$	6.919	$44 \cdot 45$	$215.80 h-27.154$	$27.03 a+223.40 k$	44.54
	$82 \cdot 23 h+77 \cdot 90 k$	$6 \cdot 995$	44.59	$214 \cdot 20 h-41 \cdot 63 a$	$41.90 a+218.88 / 2$	44.73

II.

Date.	Difference of Length in Mierometer Divisions.	4	$\begin{gathered} 253 \cdot 50 \\ -n \end{gathered}$	$r-t_{0}\left(t-t_{0}\right) \cdot s_{1}$		k
1865.						
Sept. 12	$150.97 h+0.40 a+100.43 k$	$248 \cdot 73$	- $4 \cdot 77$	$+0.08+2.13$	+ $2 \cdot 22$	$6 \cdot 90$
" "	$154.10 h+0.50 a+158.82 k$	250.05	$3 \cdot 45$	+0.05+1.33	+ 2.42	4.78
13	$154.48 h+0.75 a+157.70 k$	$249 \cdot 75$	3.75	$+0.09+2.40$	+2.62	6.15
13	$154.20 h+0.90 a+158.50 k$	$250 \cdot 34$	$3 \cdot 16$	+0.18 +4.80	+ 2.47	$7 \cdot 96$
" "	$159.90 h+1.20 a+151.62 k$	249.74	3.76	+0.05+1.33	+ 2.66	5.09
3	$153.5^{8} h+0.60 a+158.42 h$	$2+9 \cdot 4.3$	$4 \cdot 07$	+0.04 +1.07	+ 2.82	$5 \cdot 14$
14	$150.03 h+0.95 a+165.82 h$	$252 \cdot 93$	$0 \cdot 57$	$+0.10+2.67$	+ 2.60	$3 \cdot 24$
" "	$158.00 h+1.40 a+153.93 h$	$250 \cdot 31$	$3 \cdot 19$	$+0.05+1.33$	+ 2.74	$4 \cdot 5 \cdot 2$
"	$154.85 h+0.08 \alpha+157.20 h$	248.86	$4 \cdot 6$	+0.10 + 2.67	+ 2.81	$7 \cdot 31$
15	$160.13 h+3.23 a+152.97 k$	253.39	0.11	+0.14 $4+3.73$	+ 1.93	$3 \cdot 84$
, ",	$155.18 h-0.10 a+158.62 h$	$250 \cdot 04$	3.46	0.000 .00	+ 2.15	3.46
" "	$159.95 h+1.10 a+154.60 k$	252.04	$1 \cdot 46$	$0.00 \quad 0.00$	+ 2.39	1.46
23	$159.67 h+2.50 a+149.65 h$	249.51	3.99	$+0.13+3.46$	$+0.13$	7.45
" \#	155.63h+1.10a+155.15	249.04	$4 \cdot 46$	+0.06 +1.60	$+0.18$	6.06
" \quad "	$163.12 h+0.68 a+146.68 h$	247.74	5:76	$+0.08+2.13$	$+0.17$	7.89
25	156.50 $h+0.62 a+147.05 k$	$242 \cdot 70$	10.80	+0.01 +0.27	- 1.19	11.07
, ,"	$156.70 h+0.10 a+149.00 h$	243.81	9.69	$-0.05-1.33$	-1.04	$8 \cdot 36$
, ",	$14.5 \cdot 90 h+1.25 a+158.45 k$	2+4.1 1	$9 \cdot 39$	$0.00 \quad 0.00$	-0.89	$9 \cdot 39$
26	$158 \cdot 80 h+1 \cdot 03 a+147 \cdot 40 h$	2+5.29	$8 \cdot 21$	$+0.03+0.80$	- 1.31	9.01
" ",	165.55h-0.43a+141.17	243.97	$9 \cdot 53$	+0.011+0.27	-1.17	$9 \cdot 80$
3	$149.95 h-0.27 a+157.03 h$	$2+4 \cdot{ }^{1}$	9.09	$-0.04-1.07$	-1.15	8.01
27	$151.67 h+0.17 a+154.95 h$	$24+64$	8.86	-0.53	-1.51	8.33
" "	$158.23 h+1.00 a+146 \cdot 35 h$	$2+3.97$	9.53	$-0.0+-1.07$	$-1 \cdot 32$	$8 \cdot+6$
3	$149.17 h+0.43 a+155.87 h$	243.69	9.81	$+0.01+0.27$	- 1.20	10.08
28	$161.97 h+0.52 a+141.30 k$	$242 \cdot 34$	11.16	$+0.03+0.80$	- 1.63	11.96
" ${ }^{\text {, }}$	$160.50 h-0.55 a+146.70 k$	244. 23	$9 \cdot 27$	$-0.02-0.53$	- J.48	$8 \cdot 74$
9	$156.60 h-0.05 \alpha+147.25 k$	$242 \cdot 15$	11.35	$-0.02-0.53$	$-1 \cdot 4^{8}$	10.82
29	$164.85 h+0.08 a+142.13 k$	244.78	$8 \cdot 72$	+0.11 +2.93	- 1.92	11.65
" "	$16 \mathrm{I} \cdot 50 h+\mathrm{I} \cdot 17 a+141.82 k$	$243 \cdot 15$	10.35	+0.07+1.87	- 1.8 I	12.22
" "	$149.95 h-0.45 a+155.52 k$	$242 \cdot 99$	10.51	$+0.03+0.80$	- 1.75	11.31
Dec. 16	$151.25 h-0.13 a+128.18 k$	222.57	$30 \cdot 93$	$+0.20+5.33$	-19.06	$36 \cdot 26$
18	$151.90 h+1.72 a+119.57 k$	218.39	35.11	$+0.05+1.33$	-18.28	$36 \cdot+4$
" ,	$144.45 h+1.20 a+126.72 k$	217.56	$35 \cdot 94$	$-0.04-1.07$	-18.01	$3+87$
	$141.62 h-0.13 a+133.92 k$	219.49	$3+01$	-0.09 - -2.40	- 17.81	31.61
" 19	$135.45 h+0.55 a+140 \cdot 40 h$	$220 \cdot 56$	32.94	$-0.06-1.60$	- 17.81	$31 \cdot 34$
", "	$132.75 h+0.45 a+139.73 k$	217.76	35.74	$-0.13-3.46$	-17.60	$32 \cdot 28$
20	$137.65 h+0.50 a+134.00 k$	217.14	$3^{6 \cdot} 3^{6}$	$-0.12-3.20$	-17.42	33.16
20	$135 \cdot 30 h+0.48 a+142.45 h$	221.99	31.51	-0.06-1.60	-17.64	29.91
" "	$133.47 h-0.12 a+142 \cdot 75 h$	$220 \cdot 07$	33 +43	-0.09 -2.40	- 17.46	31.03
" "	$131.97 h+0.27 a+140.98 h$	217.92	$+35 \cdot 5^{8}$	$\|-0.14\|-3 \cdot 73$	- 17.27	$+31.85$

It is unnecessary to write down the equations of condition as they are obtained at a glance from the last two columns of the second table. The final equations in x and y are-

$$
\begin{array}{r}
40 x-168 \cdot 900 y+559 \cdot 22=0 \tag{12}\\
-168 \cdot 90 x+3288 \cdot 987 y-5929 \cdot 10=0
\end{array}
$$

or putting A and B for the absolute terms-

$$
\begin{align*}
& x+.03192190 \mathrm{~A}+.001639291 \mathrm{~B}=0 \tag{13}\\
& y+.00163929 \mathrm{~A}+.000388228 \mathrm{~B}=0
\end{align*}
$$

whence

$$
\begin{array}{rlrl}
x=-8 \cdot 13 & \ldots . . \text { Reciprocal of weight } & =.031922 \tag{14}\\
y & =+1 \cdot 385 & ", & =.000388
\end{array}
$$

Substituting these values in the equations of condition we get the following system of errors:-

Date.	Error.	Date.	Error.	Date.	Error.	Date.	Error.
1865.		1865.		1865.		1865:	
Sept. 12	+ ${ }_{1} .8+$	Sept. 15	- 1.69	Sept. 26	- 1.70	Dec. 10	+ 1.73
", "	0.00		-3.36	" 27	- 1.89	18	+2.99
" " ${ }^{\prime}$	+ 1.65	" 23	-0.50	",	- I. 50	" ",	+ 1.79
" 13	+3.25	" "	- 1.82	" \quad "	+0.29	" ${ }^{\prime \prime}$	- I.19
" "	+ 0.64	\cdots	+0.01	" 28	+ I. 57	\% 19	- I.46
	+0.92	" 25	+ 1.29	" "	- 1.44		-0.23
" 14	- 1.29	"	-1.21	" ${ }^{29}$	+0.64	" ${ }^{\prime \prime}$	+0.90
" "	+0.19	" "	+ 0.04	" 29	+0.86	" 20	-2.65
" ${ }^{\prime \prime}$	+3.07 +3.62	" 26	-0.93 +0.05	", ",	+0.86 +1.58 +0.76	" $"$	-1.28 -0.20
" 15			$+0.05$		$+0.76$		-0.20

The sum of the squares of these errors is $99 \cdot 19$, consequently the probable error of a single comparison is

$$
\begin{equation*}
\pm 0.674 \sqrt{\frac{99 \cdot 19}{40-2}}= \pm 1.080 \tag{15}
\end{equation*}
$$

and the probable errors of x and y

$$
\begin{align*}
& x \ldots \ldots \ldots \pm \mathrm{I} .089 \sqrt{\sqrt{.03192}}= \pm 0.195 \tag{I6}\\
& y \ldots \ldots \pm \mathrm{I} .089 \sqrt{.0003^{88}}= \pm 0.021
\end{align*}
$$

combining equations (6) and (14) we have for the relative lengths of \mathbf{P} and $\boldsymbol{T}_{\text {。 }}$ when they are both at the temperature of 62°

$$
\begin{equation*}
\mathbf{P}-2 \mathbf{T}_{o}=\alpha-2 \alpha_{0}=-320.48 \tag{17}
\end{equation*}
$$

But taking into account the probable error of x the precise result we have obtained is

$$
\begin{equation*}
\mathbf{P}=2 \mathbf{T}_{0}-\sigma+245 \cdot 37 \pm 0.195 \tag{18}
\end{equation*}
$$

We have seen that the probable errors of the determinations of the corrections to be applied to the Russian thermometers correspond to a probable error in the length of the bar of ± 0.22. Also the probable error of σ is $\pm \cdot 108$; hence

$$
\begin{equation*}
\mathbf{P}-2 \mathbf{T}_{0}=-320.48 \pm \sqrt{(.22)^{2}+(.108)^{2}+(\cdot 195)^{2}} \tag{19}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{P}=\mathbf{2} \mathbf{T}_{0}-320.48 \pm 0.313 \tag{20}
\end{equation*}
$$

7.

We may now express \mathbf{P} in terms of \mathbf{Y}_{w}, for from equation (16), page ${ }_{144}$,

$$
2 \boldsymbol{T}_{0}=(4 \cdot 26335024 \pm \cdot 000000 \pm 3) \mathbf{Y}_{80}
$$

whence

$$
\mathbf{P}=4 \cdot 26302976 \mathbf{Y}_{\mathrm{bs}}
$$

To get the probable error of this result we must remember that the probable errors of $2 \mathrm{~T}_{\text {a }}$ and of σ are connected and not independent, and we must proceed as at pages 134, 135.

The expression for $2 \mathbf{T}_{\circ}-\sigma$ is found to be

$$
\begin{aligned}
\frac{15346}{3600} Y_{b 5}+\frac{473}{600} \lambda_{1} & +2 \lambda_{2}+2 \lambda_{3}-\lambda_{1}+\frac{474}{600} b\left(\epsilon_{1}+\frac{\epsilon^{2}}{3}\right)-\frac{4}{5} x_{2}-2 x_{\tau}-\frac{6}{5} x_{3} \\
& +\frac{1}{5} x_{s}-\frac{1}{5} x_{7}-\frac{27}{50} x_{b}+2 x_{s}+\frac{473}{300} x_{g}
\end{aligned}
$$

The following table contains the arrangement of this formula in its independent parts and the corresponding probable errors:

	${ }^{2} \mathbf{T}$ - -	
1	$\frac{473}{300} x_{s}$	$\pm{ }^{\circ} 058$
2	$-\frac{27}{50} x_{b}+2 x_{f}$	$\pm{ }^{0}+$
3	$-\frac{4}{5} x_{2}-\frac{6}{5} x_{3}+\frac{1}{5} x_{0}-\frac{1}{5} x_{t}$	$\pm{ }^{094}$
4	$-2 x_{\text {r }}$	$\pm{ }^{196}$
5	$\frac{473}{600} \lambda_{1}+\frac{474}{600} b \varepsilon_{1}$	$\pm{ }^{088}$
6	$2 \lambda_{2}+\frac{158}{600} b \epsilon_{4}$	$\pm{ }^{368}$
7	$2 \lambda_{0}$	$\pm \cdot 128$
8	- λ_{1}	$\pm{ }^{107}$

To these it remains to add the probable error of x, equation (16), and that resulting from the comparisons of the Russian thermometers. Thus the square of the probable crror of \mathbf{P} in terms of $\mathbf{Y}_{w s}$ is

$$
\begin{gathered}
(058)^{2}+(074)^{2}+(094)^{2}+(196)^{2}+(088)^{2}+(368)^{2}+(128)^{2}+(107)^{2}+(195)^{2} \\
+(220)^{2}=(560)^{2}
\end{gathered}
$$

Therefore, finally, \mathbf{P} and \mathbf{Y}_{55} being both at the temperature of 62° Fahreuheit

$$
\begin{equation*}
\mathbf{P}=(4 \cdot 26302976 \pm \cdot 00000056) \mathbf{Y}_{\text {bt }} \tag{21}
\end{equation*}
$$

XXII.

FINAL RESULTS.

1.

TEN FEET STANDARD BARS.

Between the comparisons made amongst the five bars $\mathbf{O}_{1}, \mathbf{O I}_{1}, \mathbf{I}_{\mathbf{s}}, \mathbf{I}_{\mathrm{B}}, \mathbf{I}_{l}$, there exist relations such as make their absolute lengths mutually dependent, for $\mathbf{O} \mathbf{I}_{1}$ and \boldsymbol{I}_{s} have both been compared with $\mathbf{Y}_{\text {b5 }} ; \mathbf{O}_{\mathbf{1}}$ has been compared with $\mathbf{O I}_{1}$, with $\mathbf{I}_{\mathbf{S}}$, and with $\mathbf{I}_{\mathbf{B}} ; \mathbf{I}_{6}$ has been compared with \mathbf{I}_{S} and $\mathfrak{f}_{\mathrm{B}}$. The differences are as follow:-

$$
\begin{align*}
& \mathrm{OI}_{1}-{ }_{\frac{10}{3}} \mathbf{Y}_{5 s}=2 \mathrm{I} .08 \text {...... page } 92 \tag{I}\\
& \mathbf{I}_{5}-{ }_{3}^{10} \mathbf{Y}_{05}=70.62 \ldots . . \text { " } 241 \\
& O!_{1}-O_{1}=18.38 \ldots \ldots . . \quad 93 \\
& I_{s}-O_{1}=63.28 \ldots . . \quad{ }^{2} 254 \\
& I_{B}-O_{1}=195.36 \ldots \ldots . . \quad 254 \\
& I_{B}-\quad P_{b}=86.50 \ldots \ldots .{ }^{2} \quad 253 \\
& I_{B}-\quad I_{b}=218.58 \quad \ldots . . \quad \text {, } 253
\end{align*}
$$

Now, let the most probable lengths of the bars be,-

$$
\begin{align*}
\mathbf{O I}_{\mathbf{1}} & =\frac{10}{3} \mathbf{Y}+x_{1} \tag{2}\\
\mathbf{I}_{\mathbf{s}} & =\frac{10}{3} \mathbf{Y}+x_{2} \\
\mathbf{O}_{1} & =\frac{10}{3} \mathbf{Y}+x_{3} \\
\mathbf{I}_{\mathbf{B}} & =\frac{10}{3} \mathbf{Y}+x_{4} \\
\mathbf{I}_{b} & =\frac{10}{3} \mathbf{Y}+x_{5}
\end{align*}
$$

then these values substituted in equation (i) give the following-

$$
\begin{align*}
x_{1}-2 \mathrm{I} \cdot 08 & =0 \tag{3}\\
x_{2}-70 \cdot 62 & =0 \\
x_{1}-x_{3}-18 \cdot 38 & =0 \\
x_{2}-x_{3}-63.28 & =0 \\
x_{4}-x_{3}-195 \cdot 36 & =0 \\
x_{2}-x_{5}-86.50 & =0 \\
x_{4}-x_{5}-218.58 & =0
\end{align*}
$$

Solving by the method of least squares, we get-

$$
\begin{array}{rlrl}
2 x_{1}-x_{3} & -39 \cdot 46 & =0 \tag{4}\\
-x_{1}-x_{2}-x_{3} & -x_{5}-220 \cdot 40 & =0 \\
-x_{3}-x_{4}+2 x_{4}-x_{5}-413.94 & =0 \\
-x_{2}-2 x_{5}+305.08 & =0
\end{array}
$$

The values of $x_{1}, x_{2}, x_{3}, x_{4}, x_{3}$, which satisfy these equations, are-

$$
\begin{align*}
& x_{1}=+22 \cdot 32 \tag{5}\\
& x_{2}=+69 \cdot 38 \\
& x_{3}=+5 \cdot 17 \\
& x_{3}=+200 \cdot 84 \\
& x_{5}=+17 \cdot 43
\end{align*}
$$

And the residual errors of equations (3) are-

$$
\begin{array}{lll}
+1.24 & -1.23 & +0.31 \\
-1.24 & +0.93 & -0.31 \\
& +0.31 & \tag{6}
\end{array}
$$

These errors are greater than we should have been led to expect from the probable errors of the seven quantities exhibited in equations (1) (for these probable errors see the pages referred to). The inference is, that in some, or perhaps all, of the different series of comparisons-seven in number-expressed in thesc equations, an unknown source of error, constant or inconstant, has existed.

The sum of the squares of the errors (6) is 5.7413 ; hence the probable error of oue equation is-

$$
\pm 0.674 \sqrt{\frac{5 \cdot 7413}{7-5}}= \pm 1 \cdot 14
$$

and for $x_{1} \ldots x_{5}$ the resulting probable errors are-

$$
\begin{align*}
x_{1} \text { or } x_{2} \ldots \ldots \pm 1 \cdot 14 \sqrt{\frac{11}{15}} & = \pm 0.98 \tag{7}\\
x_{3} \ldots \ldots \pm 1 \cdot 14 \sqrt{\frac{14}{15}} & = \pm 1 \cdot 10 \\
x_{1} \ldots \ldots \pm 1 \cdot 14 \sqrt{\frac{2 \mathrm{I}}{15}} & = \pm 1.95 \\
x_{5} \ldots \ldots \pm 1 \cdot 14 \sqrt{\frac{20}{15}} & = \pm 1.92
\end{align*}
$$

But the number of supernumerary equations here is altogether too small to give reliable probable errors to the results. We therefore only adopt these last numbers (7) as approximate, and with this reserve state the final lengths as follows :-

nce S	$\mathbf{O}_{1}=(3 \cdot 33333850 \pm \cdot 00000110) \mathbf{Y}$
dian (Steel) Stand	(3.33340271 $\pm \cdot 00000098)$
Indian (Bronze) Stand	$(3 \cdot 33353417 \pm \cdot 00000195)$

2.

THE TOISE.

The unit of length in which the greater part of the European Geodetical Measurements are expressed is the Toise, the actual staudard being the bar known as the Toise of Peru. This standard was constructed in 1735 for the measurement of the Arc of Peru by MM. Bouguer and de la Condamine.* It is a flat bar of polished iron, 1.5 I inch in width, and 0.4 inch in thickness, notched at the ends, as in the figure below, which represents the Toise in

plan (curtailed). The length is measured from the face $a c$ to the face $b e$. The projections $a d, b f$, serve to protect the surfaces $a c, b e$, from accidents. The temperature at which this bar represents the Toise is-

$$
{ }^{13^{\circ}} \cdot 00 \text { Reaum }^{r}=16^{\circ} \cdot 25 \text { Cent }^{\circ}=61^{\circ} \cdot 25 \text { Fahr }^{t} .
$$

The coefficient of its expansion has never been determined by direct observation.

[^8]
3.

The two direct copies of the Toise of Peru with which we are concerned were made by Fortin, of Paris; one in 1821 for M. Struve, the other in 1823 for M. Bessel. We shall here denote these bars by \vec{F}_{s} and \dot{F}_{y}. The authority of the former rests on the following certificate of the Bureau des Longitudes, signed by Arago :-

> " Je sousigné, membre de l'Institut et du bureau des longitudes, " certife avoir comparé la 'loise en fer construite par Fortin et
> " destinée à Monsicur Struve, à la Toise du Pérou, qui est con-
> " servée dans les archives de l'Ohservatoire Royal. Les deux
> " toises m'ont paru parfaitement égales; le comparateur dont je
> " me suis servi m'auroit fait connoitre une différence de la " deuxcentième partie d'un millimètre.
> "P Paris, le 14 Novembre 1821 .

This copy is preserved in the Observatory of Dorpat.
The authority of Bessel's Toise is stated in the following certificate :-
" Le 31 ${ }^{\text {me }}$ Août 1823, nous avons comparé, Mr. Z ahrtmaxy et " moi, la toise en fer quc Mr. Fortrn a construite pour " Mr. Bessel de Künigslerg, à l'étalon en fer de l'Observatoire " connu sous le nom de Toise du Pérou. Il nous a semblé " que la Regle de Mr. Bessel est plus courte que l'étalon de " l'Observatoire de $\frac{1}{1 / 7}$ 区e de ligne (de un douze cent soixante" dix-huitième de ligne).

> F. Aheigo. Z.shrtmans.

This copy is preserved in the Observatory of Königsberg. It appears to be too short by $0^{l} \cdot 00078$, or as it has gencrally been taken $0^{l} \cdot 00080$.

$$
\begin{align*}
& \mathbf{F}_{\mathrm{s}}=864^{\prime} \cdot 00000 \tag{I}\\
& \mathbf{F}_{\mathrm{m}}=863 \cdot 99920
\end{align*}
$$

4.

The Standard to which all geodetical measuring apparatus in Russia are referred is a bar two toises in length, ì bouts, designated N. Its length was ascertained by means of the toise F_{B} and an auxiliary toise H, whose length was also obtained from F_{s}. These comparisons are given at pp. Lxxv, lxxvi, of the Introduction to M. Struve's account of the Russian " Arc of Meridian of $25^{\circ} 20^{\prime}$ between the Danube and the Northern Ocean." Two of the toise bars compared at Southampton, viz., the Russian P and the Prussian T_{10} have been compared with W. Of the first of these Struve remarks:-" P a été confectionné à " l'atelier de l'Observatoire central en 1850, pour accompagner le nouvel appareil, destinć à " la mesure des deux bases les plus septentrionales. En effect P a servi, en 1850 , pour la " mesure de la base d'Alten au Finmarken norvégien, et en 185 I, pour la mesure de la " base d'Ofver-Tornea, en Laponie. En 1852, cet étalon a été envoyé en Bessarabie pour "être employé à la mesure de la base de Taschbunar, la plus méridionale de toutes. La " même année, 1852 , cet étalon a été remis entre les mains du général Wrontschenko
"pour servir à la mesure des différentes bases des opérations géodésiques de la Russic méri" dionale, entreprises de la part du Dépôt topographique. Il se trouve à l'époque actuelle, " 1859 , entre les mains du colonel Wassiliew, dirigeant les opérations trigonométriques " qui longent le Wolga," p. lxxyr. This bar P, then, which has been compared at Southampton, is one of great importance.

Of the Prussian toise, which M. Struve calls B', as being a copy of Bessel's toise, he remarks:-"Le Gouvernement Prussien envoya à Poulkova, en 1852, une copie B' de la " toise de l'Observatoire de Königsberg B, employée par Bessel dans ses experiences du "pendule et dans sa mesure de degrés, toise qui depuis a servi d'unité pour toutes les "opérations géodésiques de Prusse. Cette copie \mathbb{B} ", en fer avec des boutons saillants en "acier poli, est presque exactement égale à la dite toise de Bessel \mathbb{B}, la différence étant $" \mathbf{B}-\mathbf{B}^{\prime}=0.00019$, d'après l'iuscription gravée sur \mathbb{S}^{\prime}. Ce \mathbf{B}^{\prime} a été directement "comparé à \mathbb{N}, à l'aide d'uve toise auxiliare \& La comparaison a été effectuée "cn déterminant alteruativement $\mathbf{G}^{\prime}-H$ et $\mathbb{N}-\left(B^{\prime}+H\right)$."

The following table contains the results of the comparisons of these bars by M. Struve, taken from page cxxin of the work named above:-

Noun de l'étalon.	Lougueur exprimée en lignes de la 「oise de Fortin, celle-ci ayant la température $+13^{\circ} \cdot 0 \mathrm{lk}$.	Température de l'étalon déterminé, liéaum.	Erreur probuble de la longueur, en unités de la cinquiène décimale et relative d :	
			\mathbf{N}	Fortia.
1. Stalon primitif it bouts N	1728.01249	13.0	\bigcirc	70
2. Copie it bouts $\mathbf{N}^{\prime}=\boldsymbol{P}$	1727.99440	"	19	
9. Copie à bouts de la toise de Bessel E'	863.99914	"	10	

5.

The Prussian and Belgian toises, Nos. 10 and 11, were compared in 1852 by General Bacyer with Bessel's tcise. The comparisons will be found in the work entitled "Compie " rendu des Opérations de la Commission institu'e par M. le Ministre de le Guerve, pour "ćtalonner les rè̀les qui ont été employées i lu muesure des bases géodésiqués " lelges." Bruxelles 1855 . The results, page 49, are

$$
\begin{align*}
& \text { Toise No. } 10=863^{i} .850674+0.0091284 t \tag{2}\\
& \text { Toise No. } 11=863.850213+0.0091560 t
\end{align*}
$$

vinere t is the temperature Centigrade. For $t=16^{\circ} \cdot 25$, which is the same as 13° Reaumur or $61^{\circ} \cdot 25$ Fahrenheit,

$$
\begin{align*}
& \text { Toise No. } 10=863^{\prime} \cdot 999011 \pm 0 \cdot 000109 \tag{3}\\
& \text { Toise No. } 11=863 \cdot 998998 \pm 0 \cdot 000119
\end{align*}
$$

General Bacyer expresses his results thus, page 36:一" Mesuréc avec la toise de "Bessel, la copie No. so est égale à $863^{\prime} \cdot 9990$ a avec l'erreur probable $\pm 0^{t} \cdot 0001$ I. Struve '" a mesuré la longueur de cette copie à l'aide de la toise russe de Fortin, et il l'a trouvée "'égale à 863^{l}. 99914 , avec l'erreur probable $\pm 0^{\circ} .000 \mathrm{IO}$. D'où il suit que la toise de "Bessel, mesurée avec la toise russe, égale $863^{\prime} \cdot 99933$, tandis que le certificat de cette
" méme toise lui assigne une longueur de $863^{\prime} \cdot 99920$. La différence est donc de $0^{\prime} \cdot 00013$, " avec l'erreur probable \pm o'.00015.
"La toisc No. ir est précisément égale au No. io. Sa longueur est donc, daprès la " toise russe, de $863^{\prime} \cdot 999$ 14, $^{\prime}$ avec l'erreur probable $\pm 0^{\prime} \cdot 00016$. Sa détermination d'apris;
" la toise de Bessel comporte l'erreur probable $\pm 0^{\prime} \cdot 00012$.
"La toise russe est donc de $\mathrm{o}^{\prime} \cdot 00013$ plus longue que celle de Königsberg. Cette " belle coincidence prouve que les comparaisons des diverses toises ont été faites avec une " grande précision, et ne laissent rien à désirer au point de vue des opérations " géodésiques."

The results in equation (2) were obtained on the assumption of Bessel's toise being represented by the equation

$$
\begin{equation*}
F_{\mathrm{D}}=863^{l} \cdot 841161+0^{\prime} \cdot 0097255 t \tag{4}
\end{equation*}
$$

where t is the temperature Centigrade. This rate of expansion was determined by Bessel himself between the years 1835 and 1837 . An carlier investigation of the expansion of the same bar lead him to the result

$$
\begin{equation*}
\boldsymbol{F}_{\mathrm{B}}=863^{t} .8353^{8} 4+\mathrm{o}^{\prime} \cdot 01008_{11} t \tag{5}
\end{equation*}
$$

from either formula when $t=16^{\circ} \cdot 25, F_{\mathrm{D}}=863 \cdot 99920$.

6.

From the comparisons of the Prussian, Belgian, and Russian toiscs with the Ordnance toise ($\mathbf{T}_{10} \mathbf{T}_{11}$ and \mathbf{P} with \mathbf{T}_{3}) given in sections xi, xit, xxt, of the present work, we have

$$
\begin{aligned}
& \mathbf{T}_{10}=\mathbf{T}_{0}-154.32 \pm \cdot 15 \cdots \text {..... page } 134 \\
& \mathbf{T}_{11}=\mathbf{T}_{0}-156 \cdot 10 \pm \cdot 27 \cdots, \ldots \quad 150 \\
& \mathbf{P}=2 \boldsymbol{T}_{0}-320 \cdot 48 \pm \cdot 3 \mathrm{I} \cdot \ldots \text {... } 266
\end{aligned}
$$

all the bars being at the temperature of 62° Fahrenheit. It will be necessary to reduce these equations to what they would be if all the bars were at $61^{\circ} \cdot 25$ instead of $62^{\circ} .00$. There is no difficulty in this, and indeed the differences of length at the lower tempernture have a slightly smaller probable error in each case, though the difference is scarcely sensible. For the temperature $61^{\circ} \cdot 25$ the above equations become

$$
\begin{align*}
& \mathbf{T}_{10}=\mathbf{T}_{0}-154.52 \pm 0.15 \tag{6}\\
& \mathbf{T}_{11}=\mathbf{T}_{0}-156.33 \pm 0.27 \\
& \mathbf{P}=2 \mathbf{T}_{0}-321.52 \pm 0.31
\end{align*}
$$

Such are the differences of length of the Prussiau, Belgian, and Russian bars as compared with the Ordnance toise at Southampton, at the temperature of

$$
13^{\circ} \text { Reaumur }=16^{\circ} \cdot 25 \text { Centigrade }=G 1^{\circ} \cdot 25 \text { Fuhrenheit. }
$$

7.

The continental comparisons which we have referred to above, give the following equations-in which we use the letter \mathbb{C} to signify the length of the toise, that is the Toise of Peru at $13^{\circ} \mathrm{R}$.

$$
\begin{align*}
\mathbf{F}_{\mathrm{B}} & =\mathbb{T}, \tag{7}\\
\mathbf{F}_{\mathrm{D}} & =\mathbb{T}-0.00080 \\
\mathbf{N} & =2 \mathbf{F}_{\mathrm{B}}+0.01249 \pm 0.00070 \\
\mathbf{P} & =\mathbf{N}-0.01809 \pm 0.00019 \\
2 \mathbf{T}_{10} & =\mathbf{N}-0.0142 \mathrm{I} \pm 0.00020 \\
\mathbf{T}_{10} & =\mathbf{F}_{\mathrm{D}}-0.00019 \pm 0.0001 \mathrm{I} \\
\mathbf{T}_{11} & =\mathbf{F}_{\mathrm{D}}-0.00020 \pm 0.00012
\end{align*}
$$

Now $1^{1} .00=\frac{1}{64} \mathbb{T}=2467.03$ millionths of a yard. Making this substitution in equations (7) and adding to them equations (6) we have the following system :

$$
\begin{align*}
\mathbf{F}_{\mathbf{s}} & =\mathbb{T} \tag{8}\\
\mathbf{F}_{\mathrm{p}} & =\mathbb{T}-1.97 \\
\mathbf{N} & =2 \mathbf{F}_{\mathbf{s}}+30.8 \mathbf{1} \pm \mathbf{1} \cdot 73 \\
\mathbf{P} & =\mathbf{N}-44.63 \pm 0.47 \\
2 \mathbf{T}_{10} & =\mathbf{N}-35.06 \pm 0.49 \\
\mathbf{T}_{10} & =\mathbf{F}_{\mathbf{B}}-0.47 \pm 0.27 \\
\mathbf{T}_{11} & =\mathbf{F}_{\mathbf{I}}-0.49 \pm 0.30 \\
\mathbf{T}_{10} & =\mathbf{T}_{0}-154.52 \pm 0.15 \\
\mathbf{T}_{11} & =\mathbf{T}_{0}-156.33 \pm 0.27 \\
\mathbf{P} & =2 \mathbf{T}_{0}-321.52 \pm 0.3 \mathrm{I}
\end{align*}
$$

These equations trace the connection between the Ordnance toise and the Toise of Peru through the intervention of six other bars. Now let

$$
\begin{align*}
& \mathbf{F}_{\mathrm{B}}=\mathbb{U}+x_{1} \tag{9}\\
& \mathbf{F}_{\mathbf{v}}=\mathbb{U}+x_{2} \\
& \mathbf{N}=2 \mathbb{U}+x_{3} \\
& \mathbf{P}=2 \mathbb{T}+x_{4} \\
& \mathbf{T}_{10}=\mathbb{U}+x_{5} \\
& \mathbf{T}_{11}=\mathbb{T}+x_{0} \\
& \mathbf{T}_{0}=\mathbb{U}+x_{7}
\end{align*}
$$

Substituting these in (8) they become

$$
\begin{align*}
x_{1} & =0 \tag{io}\\
x_{2}+1.97 & =0 \\
x_{3}-2 x_{1}-30.81 & =0 \\
x_{4}-x_{3}+44.63 & =0 \\
2 x_{5}-x_{3}+35 \cdot 06 & =0 \\
x_{5}-x_{2}+0.47 & =0 \\
x_{6}-x_{2}+0.49 & =0 \\
x_{5}-x_{7}+154 \cdot 52 & =0 \\
x_{6}-x_{7}+156.33 & =0 \\
x_{4}-2 x_{7}+32 \mathrm{I} .52 & =0
\end{align*}
$$

We now solve these equations by the method of least squares; but without attempting to assign weights, we shall ascertain the values of $x_{1} x_{2} x_{3} x_{4} x_{5} x_{0} x_{7}$ which give the sum of the squares of the errors a minimum. The resulting equations are-

$$
\begin{align*}
+5 x_{1} & & +2 x_{3} & +6 \mathrm{I} \cdot 62 \tag{II}
\end{align*}=0
$$

Putting $A_{1} A_{2} A_{3} \ldots A_{7}$ for the absolute terms of these equations, we get-

$$
\begin{align*}
& 296 x_{1}+200 A_{1}+96 A_{2}+352 A_{3}+336 A_{4}+160 A_{5}+128 A_{i}+160 A_{7}=0 \tag{12}\\
& 296 x_{2}+96 A_{1}+200 A_{2}+240 A_{3}+256 A_{4}+136 A_{5}+168 A_{0}+136 A_{7}=0 \\
& 296 x_{5}+352 A_{1}+240 A_{2}+880 A_{3}+840 A_{4}+400 A_{5}+320 A_{6}+400 A_{7}=0 \\
& 296 x_{4}+336 A_{1}+256 A_{2}+840 A_{3}+1044 A_{4}+402 A_{5}+366 A_{6}+476 A_{i}=0 \\
& 296 x_{5}+160 A_{1}+136 A_{2}+400 A_{3}+402 A_{5}+239 A_{5}+169 A_{6}+202 A_{7}=0 \\
& 296 x_{0}+128 A_{1}+168 A_{2}+320 A_{3}+366 A_{1}+169 A_{5}+335 A_{i}+206 A_{7}=0 \\
& 296 x_{7}+160 A_{1}+136 A_{2}+400 A_{5}+476 A_{4}+202 A_{5}+206 A_{6}+276 A_{7}=0
\end{align*}
$$

from which the actual values of $x_{1} \ldots x_{7}$ are found to be-

$$
\begin{array}{ll}
x_{1}=-0.07 & x_{5}=-2.05 \tag{13}\\
x_{2}=-1.90 & x_{0}=-2.65 \\
x_{3}=+30.65 & x_{7}=+153.42 \\
x_{4}=-14.33 &
\end{array}
$$

8.

We have now by the solution of ten equations containing seven unknown quantities,these equations expressing the results of ten series of comparisons between seven bars of one or two toises in length amongst themselves and the Toise of Per u, —obtained the diffcrence in length between that Standard and the Ordnance Toise at $61^{\circ} .25$ Fahrenheit. By equations (9) and (13) we have-

$$
\begin{equation*}
\mathbf{T}_{\mathbf{0}}=\mathbb{C}+153.42 \tag{14}
\end{equation*}
$$

In order to estimate the probable error of this result, we must substitute the values just obtained of $x_{1} \ldots x_{7}$ in equations (io), and we get the following sy'stem of errors :-

Comparismss.	Apparent Eirrors expressed in parts of the Yard and 'l'oise.	
	$\stackrel{\text { novevo }}{10000}$	$\frac{\tilde{C}}{864}$
Struve's Toise with Toise of Peru; by Aragn	-0.07	-0.00003
Bessel's 'Toise with Toise of l'eru; by Arago and Zahrtmann	+0.07	+0.00003
Russian Normal Bar with Struve's Toise; by Struve... ...	-0.03	-0.00001
Russian Normal Bar with its first copy P ; by Struve	-0.35	-0.00014
Prussian 'Toise, No. 10, with Russian Normal Bar ; by Struve ...	+0.31	+0.00013
Prussian 'Toise, No. 10, with Bessel's 'Toise ; by General Baeyer	+0.32	$+0.00013$
Belgian Toise, No. 11, with Bessel's Toise ; by General Baeyer ...	-0.25	-0.00010
Prussian Toise with Ordnance Toise, at Southampton	-0.95	-0.00039
Belgian Toise with Ordnance Toise, at Southampton	+0.26	+0.00010
Russian Bar P with Ordnance Toise, at Southampton	+0.35	+0.00014

It appears from this Table that the discrepancies among the different series of comparisons specified therein are remarkably small; the largest not amounting to the millionth part of a yard. Five of them are greater, and five less, than ± 0.30.

From the last of the equations (12) we gather that the weight of the determination of x_{7} is somewhat greater than unity; that is to say, our resulting value of \mathbf{T}_{0} has at least as much weight as if it had been directly compared with the 'Toise of Peru. This is on the supposition of all the ten series of comparison being equally good: and we further get for the probable error of the value of \mathbf{T}_{0}, something less than ± 0.30. But the number of equations is not sufficiently large to admit of much precision, and we shall adopt ± 0.50 as a quantity which the probable error of our result does not exceed. Hence-

$$
\begin{equation*}
\text { At } 61^{\circ} \cdot 25 \mathrm{~F} \ldots \ldots . \mathrm{T}_{o}=\mathbb{C}+153 \cdot 42 \pm 0 \cdot=0 \tag{15}
\end{equation*}
$$

At page 144 we find that both bars being at $62^{\circ} \cdot 00$ Fahrenheit, $\mathbf{T}_{0}=2 \cdot 13167512 \mathbf{Y}_{55}$; at $61^{\circ} \cdot 25$, we easily find from the data, pages 142,143 ,

$$
\begin{equation*}
\mathbf{T}_{0}=(2 \cdot 13167584 \pm 0 \cdot 00000021) \mathbf{Y}_{55} \tag{16}
\end{equation*}
$$

Taking the expansion of Y_{55} as 6.5145 , (see pages go and 227) the difference of length of Y_{55} at $62^{\circ} \cdot 00$ and of the same bar at $61^{\circ} \cdot 25$ is $4 \cdot 886$: putting, therefore, in the last equation $\mathbf{Y}_{55}-4.886$ in place of \mathbf{Y}_{55} we have-

$$
\begin{equation*}
T_{v}=(2 \cdot 13166543 \pm 0 \cdot 00000021) Y_{s s} \tag{17}
\end{equation*}
$$

where \mathbf{T}_{0} is at the temperature $61^{\circ} \cdot 25 \mathrm{Fabr}$. and \mathbf{Y}_{35} at the temperature $62^{\circ} \cdot 00$. This equation combined with (15) gives finally for the Toise of Peru,

$$
\begin{equation*}
\mathbb{C}=(2 \cdot 13151201 \pm 0.0000005 t) \mathbf{Y}_{s s} \tag{18}
\end{equation*}
$$

9.

The corresponding values of the other toises resulting from the values of $x_{1} x_{2} \ldots x_{3}$ equations (13) are as in the first column of the following Table:-

Toise.	Values resulting from the Solutions of Equations (8).	Value assigned by M. Arago.	Value assigued by M. Struve.	$\begin{gathered} \text { Value assigned } \\ \text { by General Bueyer. } \end{gathered}$	'remp' of Bar.
F_{B}	863.99997	864.00000			$\stackrel{c}{16^{\circ} \cdot 25}$
F^{3}	863.99923	863.99920			"
N	1728.01242	8.	1728.01249		,
P	1727.99419	.	$1727.99+40$		"
T_{10}	863.99917	863.999^{14}	$863 \cdot 99901$	"
T_{11}	$863 \cdot 99893$	863.99900	"

10.

There remains yet another determination of the value of the Toise in terms of the Yard,-that resulting from the comparison of the Indiau Standard B (which we have called \mathbf{I}_{b}) with a double Toise à traits. From these comparisons which were made between the years 1847 and 1850 by M . Struve, at Poulkova, he arrived at the result that at $62^{\circ} \cdot 00$ Fabrt. the length of the Indian Bar was

$$
I_{b}=1351 \cdot 14398\left(\frac{F_{8}}{864}\right)
$$

the toise of Fortin being at its normal temperature of $61^{\circ} \cdot 25$ Fahrr. From this we get-

$$
F_{\mathrm{B}}=\frac{864}{1351 \cdot 14398} \mathrm{I}_{6}
$$

We have shown that the length of \mathbf{I}_{0} is $3.33331590 \mathbf{Y}_{55}$, both bars being at 62°, hence

$$
\mathbf{F}_{\mathrm{B}}=\mathbb{C}=2 \cdot 13151595 \mathbf{Y}_{35}
$$

This value of the toise is 3.94 millionths of a yard greater than that we have found from the comparisons of the Ordnance toise with the Russian, Prussian, and Belgian toises. The stated probable error of Struve's determination of the length of l_{0} with reference to his normal bar \mathbf{N} is $\pm 0^{1} .00044$ or ± 1.09 millionths of a yard, which is about the same as our estimated probable error of P_{b}, with respect to Y_{55}. The difference 3.94 is a small quantity when we consider the intricacy of the operations necessary to obtain the ratio of the toise and yard. We shall make no further use of this value of \mathbb{C}; merely regarding it as an entirely independent corroboration of the result stated in equation (18).

11.

THE METRE.

The metre is by definition $443 \cdot 296$ "lignes" of the Toise of Peru.* Putting then $\mathfrak{A l}$ for the length of the metre

$$
\begin{equation*}
\mathfrak{A l}=\frac{443296}{864000} \mathbb{I} \tag{19}
\end{equation*}
$$

Substituting the value of \mathbb{C} from (18), we get the length of The Metre

$$
\begin{equation*}
A A T=(1.09362355 \pm 0.00000028) \mathbf{Y}_{b s} \tag{20}
\end{equation*}
$$

12.

From the observations recorded in Section IX. for the determination of the length of the Ordnance metre, it has been shown that its length is

$$
\text { I } \cdot 09375344 \mathbf{Y}_{55}
$$

both bars being at 62° Fahrenheit. But if both bars be at $61^{\circ} \cdot 25$, we get
$1.09375378 \mathbf{Y}_{55}$

[^9]for the length of O.M. Now the length of $\mathbf{Y}_{\text {BS }}$ at $61^{\circ} \cdot 25$ is less than the lengti of the same bar at 62° by 4.886 : putting therefore in the last equation, $\mathbf{Y}_{s}-4.886$ instead of \mathbf{Y}_{55} we get
\[

$$
\begin{equation*}
1.09374844 \mathbf{Y}_{5 s} \tag{21}
\end{equation*}
$$

\]

as the length of $\mathbf{O M}$ at $61^{\circ} \cdot 25$, while \mathbf{Y}_{55} is at its normal temperature of $62^{\circ} \cdot \infty$.
Also from equations (5), page 172, we tind that both bars being at $61^{\circ} \cdot 25$, the Royal Society's Platinum Metre exceeds the Ordnance metre by $9 \cdot 98$, that is, its length is

$$
1 \cdot 09375842 \mathbf{Y}_{35}
$$

It would appear from the description given in the Base du Système Métrique Décimal, that the platinum bars which were to represent the metre at the temperature of melting ice, ($0^{\circ} \cdot 00 \mathrm{C} .=0^{\circ} .00 \mathrm{R} .=32^{\circ} .00$ F.) , were laid off from the Toise of Peru at 13° Reaumur, allowance being made for the contraction of the bars, according to the rate of expansion of platinum as ascertained by Borda. At page 326, tom. iii., Borda states his results thus: that the expansion of platinum for one degree of the thermometer of Reaumur is $\overline{3} \frac{1}{8} \frac{1}{8} \sigma$. According to this the correction to the length of the platinum metres at $16^{\circ} \cdot 25^{\mathrm{C}} .=13^{\circ} \mathrm{R}$. would be-

$$
\frac{13}{92800} \mathfrak{A t}
$$

which in parts of the yard $=0.00015320$.
Nothing is known as to the construction of the particular platinum metre we are considering; but it can only be assumed as most probable that it was constructed in the manner described, allowance being made for its expansion under 13° Reaumur. We must therefore deduct from the length of the Royal Society's metre at 3° R., 0.00015320 , which leaves

$$
1.09360522 \mathbf{Y}_{55}
$$

Now according to M. Arago's verification of this bar it is less than a metre by 17.59 thousandth parts of a millimetre, that is by 19.24 millionths of a yard. Hence, finally, adding this quantity, we get the value of The Metre as deduced from the Royal Society's Platinum Metre-

$$
\mathfrak{A H}=1.09362446 \mathbf{Y}_{\mathrm{bs}}
$$

No probable error can be assigned, as there is no way of estimating the accuracy of M. Arago's measurement.

Comparing this with the value obtained through the toise, equation (20), we find the difference is only 0.91 millionths of a yard, an agreement equally remarkable and satisfactory.

13.

We shall now for convenience bring together all our results in the following table; taking the value of Y_{bs} from equations (24) page 162.
nellation 並engths of grandaris.

APPENDIX.

figure of the earth.

The semiaxes of the spheroid resulting from the investigation of the Figure of the Earth in the Account of the Principal Triangulation of Great Britain and Ireland are expressed in feet of the Ordnance Survey ten-feet Standard Bar \mathbf{O}_{1}. They are moreover dependent on a numerical ratio of this bar to the Toise of Peru deduced from Mr. Baily's comparison of the platinum metre (ì traits) of the Royal Society with certain division lines on the Royal Astronomical Society's tubular scale, combined with comparisons by the late Lt. Murphy, R.E., between this last scale and the ten-feet Standard \mathbf{O}_{2}, and another series of comparisons of \mathbf{O}_{2} with \mathbf{O}_{1}. From these different comparisons the lengths of the metre and toise were concluded to be-

$$
\begin{aligned}
& \text { Metre }=3 \cdot 28087463 \text { feet of } \mathbf{O}_{\mathbf{I}} \\
& \text { Toise }=6 \cdot 39454378 \text { feet of } \boldsymbol{O}_{\mathbf{I}}
\end{aligned}
$$

the second of these numbers being simply computed from the first by the legally defined ratio (443296 : 864000) of the metre and toise.

Although this determination of the length of the toise had a considerable d prioni probable error as depending entirely upon observations on a bar so difficult to observe as the platinum metre, still it happens to be exceedingly near the truth, for the true length of the toise is now known with remarkable precision, the Belgian, Prussian, and Russian Standards giving almost the same result, as will be seen from the following table :-

Geodetic Standards$13^{\circ} \mathrm{R} .=16^{\circ} \cdot 2_{5}^{\text {at }} \mathrm{C} .=61^{\circ} \cdot 25 \mathrm{~F} .$	Length in Lines of the Toise of Peru at$\begin{aligned} & 13^{\circ} \mathrm{R} .=16^{\circ} \cdot 25 \mathrm{C}=61^{\circ} \cdot 25 \mathrm{~F} . \\ & \text { according to } \end{aligned}$		Length as determincd at Southampton in feet of the Standard Yard.
	M. Struve.	General Daeyer.	
Russian double toise	1727.99440		$12 \cdot 78902289$
Prussian toise.	863.99914	863.99901	$6 \cdot 39453018$
Belgian toiso .		863.99900	$6 \cdot 39+5^{2}+75$

Whence the following entirely independent values of the toise in Euglish feet:-

By combining the different comparisons made both in England and on the Continent on these bars, by the method of least squares, the final value of THE ToISE is-

$$
6.39453348 \text { feet }: \log =0.8058088656
$$

from which the greatest divergence of the three separate results above is only half a millionth of a toise, a difference corresponding to ten feet in the earth's radius.

The length of Thr: Msins' deduced from the above by the fixed ratio of the metre and toise is --

$$
3.28086933 \text { feet }: \log =0.5159889356
$$

The length of the Ordnance Standard \mathbf{O}_{1} at $62^{\circ} .00 \mathrm{~F}$. in feet of the Standard Yard is$10 \cdot 00001151$ feet.
The data of the problem of the Figure of the Earth are as follow, to commence with the French arc from Formentera to Dunkirk:-

Stations.	Astronomical Latitudes.			Distance of Parallels in Toises.	Distance of Parallels in Standard Feet.
		,	\prime		
Formentera		39	53.17		
Montjouy.			44.96	1.53673 .61	982671.04
Barcelona		22	47.90	$154616 \cdot 74$	988701.92
Carcassonne			54.30	$259172 \cdot 61$	1657287.93
Pantheon. .			47.98	580312.41	$3710827 \cdot 13$
Dunkirk		2	8.41	705257.21	$4509790 \cdot 8+$

The latitude of Formentera, as here given, is taken from the observations of M. Biot recorded and computed in the 3rd volume of his "Traité Elómentaire d'A stronomie physique," see page 509. With respect to the latitude of the Pantheon, the mean of 4532 observations gave $48^{\circ} 50^{\prime} 48^{\prime \prime} .86$ ("Buse clu Système Métrique Décimal;" ii., 413) : this station is according to Delambre's geodetical connection, $560 \cdot 99$ toises or $35^{\prime \prime} \cdot 3^{8}$ north of the south face of the Imperial Observatory in Paris. In the eighth volume of "Annales de l'Observutoire Imporial de Paris," page 317, we find several recent and closely agreeing determinations of the latitude of the south face of the Observatory, of which the mean is $4^{8^{\circ}} 50^{\prime} 11^{\prime \prime} \cdot 7 \mathrm{I}$. Adding $35^{\prime \prime} \cdot 38$ to this would give $4^{8^{\circ}} 50^{\prime} 47^{\prime \prime}$.og for the latitude of the Pantheon; instead therefore of simply using the observed latitude of the Pantheon, we use the mean between this and the transferred latitude of the Observatory, viz., $48^{\circ} 50^{\prime} 47^{\prime \prime} \cdot 98$. The latitude of Dunkirk is that obtained from Ramsden's Zenith Sector; it agrees very closely with M. Leverrier's new determination (Annales, \&c., viii., p. 256) $51^{\circ} 2^{\prime} 8^{\prime \prime} \cdot 90$,

The distance of the parallels of Dunkirk and Greenwich, deduced from the recent extension of the triangulation of England into France in 1862, is $16140 \% \cdot 3$ feet (of \mathbf{O}_{1}) which is 3.9 feet greater than the distance deduced from Captain Kater's triangulation, and 3.2 feet less than the distance calculated by Delambre from General Roy's triangulation. This agreement of three entirely independent operations is highly satisfactory. The following table shows the data of the English arc with the distances of parallels in standard feet fiom Formentera:-

Stations.	Astronomical Latitudes.		Distance of l'arallels in Feet of 0 ,	Distance of Parallels from Formentera
	- ,	"		
Formentera	. \cdot.			
Greenwich.	5128	$38 \cdot 30$		$4571198 \cdot 3$
Arbury	5213	$26 \cdot 59$	$272639 \cdot 0$	4943837.6
Clifton'..	$53 \quad 27$	29.50	$722864 \cdot 3$	5394063.4
Kellie Law	56	$53 \cdot 60$	1742021.4	6413221.7
Stirling .	$57 \quad 27$	49.12	$2186122 \cdot 5$	6857.323 .3
Sumavord.	6049	$37 \cdot 21$	3415618.5	8080820.7

The latitude assigned in this table to Saxavord is not the directly observed latitude, which is $60^{\circ} 49^{\prime} 33^{\prime \prime} \cdot 5^{8}$, for there are here a cluster of three points whose latitudes are astronomically determined, and if we transfer, by means of the geodetic connection, the latitude of Gerth of Scaw to Saxavord we get $60^{\circ} 49^{\prime} 36^{\prime \prime} \cdot 59$, and if we similarly transfer the latitude of Baltco we get $60^{\circ} 49^{\prime} 3^{\prime \prime \prime} \cdot 4 \sigma^{\prime}$. The mean of these three is that entered in the above table.

For the Indian Arc, in Longitude $77^{\circ} 40^{\prime}$, we have the following data:

Stations.	Astronomical Latitudes.			Distance of l'arallels in feet of \mathbf{O}_{1}.	Inistance of Parallele in Stundard Feet.
		,	"		
Punnæ.	8	9	31-132	
Putchapolliam			$42 \cdot 276$	102917.3.7	$102917+9$
Dodugoontal			$52 \cdot 165$	17.56560	17.56562 .0
Namthabad			$53 \cdot 562$	$2518373+$	$2518376 \cdot 3$
Daumergida		3	15.292	$3.591784 \cdot 3$	3591788.4
Takalkhera			$51 \cdot 532$	469732+1	4697329.5
Kalianpur		7	11.262	5794689 -	$579+695 \cdot 7$
Kaliana .		30	$48 \cdot 322$	775.5827 .0	77558359

The data of the Russian Arc, (Long. $26^{\circ} 40^{\prime}$,) taken from M. Struve's work are as below :

Stations.	Astronomical Latitudes.			Distance of Parallels	Distance of Parallels
	-	1	"		
Staro Nekrassowkn.	45	20	2.94		
Wodolui.	47	J	24.98	96415:136	$616529 \cdot 81$
Ssuprunkowai	48	45	$3{ }^{\circ} \mathrm{O} 4$	194973.124	1246762.17
Kremenetz . .	50		$49 \cdot 95$	271724.510	$1737551 \cdot{ }^{8}$
Belin	52	2	$42 \cdot 16$	382943 -5	2448745 17
Nemesch	54	39	4.16	$5317.33 \cdot 042$	3400312.63
Jacobstadt	56		+.97	637483.921	$4076+12 \cdot 28$
Dorpat.	58	22	47.56	$7+4 \rightarrow 6+48$	$4762421+3$
Hogland.			$9 \cdot 8$	$842.303 \cdot 102$	$5386 \times 35 \cdot 39$
Kilpi-maki		38	$5 \cdot 2$	988016.669	63179056
Tornea.	65	49	44.57	1170810'973	$7486789 \cdot 97$
Stuor-oivi		40	. $5 \cdot 40$	$1334032 \cdot 875$	8530517.90
Fuglenoss		40	11)23	$14477^{86} \cdot 783$	9257921'06

For the Arc mensured by Sir Thomas Maclear, (Longitude $18^{\circ} 30^{\circ}$) we have-

Stations.	Astronomical Latitudes.			Distance of Parallels in Feet of \mathbf{O}_{1}.	Distance of Parallels in Standard Feet.
		1			
N. End			17.66	,	
Heerenlogement Berg .	31	58	9.15	$811506 \cdot 8$	8115077
Royal Observatory . . .	33	56	$3 \cdot 20$	1526385° I	$1526386 \cdot 8$
7wart Kop		13	$32 \cdot 13$	$16325^{81} 4$	1632583.3
Cape Point			$6 \cdot 26$	1678373.8	1678375%

And, finally, for the Peruvian Arc, in Longitude $281^{\circ} 0^{\prime}$:

Stations.	Astronomical Latitudes.	Distance of Parallels in 'Toises.	Distance of Parallets in Standard Feet.
	- , "		
'Tarqui	-3 + $32 \cdot 068$	\cdots
Cotchesqui	$\bigcirc 31.387$	176875.5	$1131036 \cdot 3$

There is no necessity here to explain the manner of applying the method of least squares to the Figure of the Earth. Let the polar seminxis be

$$
\begin{equation*}
\frac{20855.500}{1+\frac{u}{10000}} \tag{1}
\end{equation*}
$$

and supposing the earth to be an ellipsoid, let*

$$
\begin{equation*}
n=\frac{1}{590}+(v+w \cos 2 \omega+z \sin 2 \omega) \sin 10^{\prime \prime} \tag{2}
\end{equation*}
$$

where n is the ratio of the difference of the equatorial (in longitude ω east of Greenwich) and polar semiaxes to their sum. Let $x_{1} x_{2} x_{3} x_{4} x_{5}$ be the corrections to the observed latitudes of the southern points of the five ares, then the corrections to the latitudes of the other points will be as follow:-

[^10]The sum of the squares of these to corrections being unade a minimum, we get the following ecquations for $u v z v z$ after having eliminated $x_{1} x_{2} x_{1} x_{4} x_{5}$;

$$
\begin{align*}
& 0=-33.0215+228.0293 u-136.2457 v-147.5770 w-82.7288 z \\
& 0=+13.1070-136.2457 u+188.6212 v+95.9509 w+11+7473 z \tag{3}\\
& 0=+16.9976-147.5770 u+95.9509 v+100.0405 w+5^{6.4999 z} \\
& 0=-4.9223-82.7288 u+114.7473 v+56.4999 w+88.5808 z
\end{align*}
$$

writing A BCD for the absolute terms in these equations, they become on elimination,

$$
\begin{align*}
& 0=u+0.103665 \mathrm{~A}-0.015079 \mathrm{~B}+0.158926 \mathrm{C}+0.014982 \mathrm{D} \\
& 0=v-0.015079 \mathrm{~A}+0.03355^{8} \mathrm{~B}-0.034271 \mathrm{C}-0.035694 \mathrm{D} \\
& 0=\imath v+0.158926 \mathrm{~A}-0.034271 \mathrm{~B}+0.263234 \mathrm{C}+0.024921 \mathrm{D} \tag{4}\\
& 0=z+0.014982 \mathrm{~A}-0.035694 \mathrm{~B}+0.024921 \mathrm{C}+0.055623 \mathrm{D}
\end{align*}
$$

Sulbstituting here the values of A B C D, we get-

$$
\begin{align*}
u & =+0.9932 \\
v & =-0.5309 \tag{5}\\
w & =+1.3455 \\
z & =+0.8128
\end{align*}
$$

These values being substituted in equations (1), (2), give-

$$
\text { Polar semiaxis }=20853429 \text { feet. }
$$

$$
\begin{aligned}
\text { Equatorial semiaxis } & =20923161+3189 \cos 2\left(\omega-15^{\circ} \cdot 3+^{\prime}\right) \\
n & =0.001669176+.00007621 \cos 2\left(\omega-15^{\circ} \cdot 34^{\prime}\right)
\end{aligned}
$$

Elelenyis of the Figute of the Ehinth.

Semiaxes.	Length in		
	Feet.	Toise.	Metres.
$\begin{aligned} & \text { Major semiaxis }=a \text {, of equator (long. } 15^{\circ} \cdot 34^{\prime} \text { E.) } \\ & \text { Minor semiaxis }=b \text {, of equator (long. } 105^{\circ} \cdot 34^{\prime} \text { E.) } \\ & \text { Polar semiaxis }=c, \ldots \ldots \ldots \ldots \ldots \ldots . ~ \end{aligned}$	20926350	$3272537 \cdot 3$	63782940
	20919972	$3271540 \cdot 1$	6376350.4
	20853429	$3261133 \cdot 8$	6356068.1
$\frac{a-c}{c}=\frac{1}{285 \cdot 97}: \frac{b-c}{c}=\frac{1}{313 \cdot 38}: \frac{a-b}{c}=\frac{1}{326 j 0 ;}$			

The length of the meridian quadrant passing through Paris, is . 10001472 5 metres, and the minimum quadrant, in longitude $105^{\circ} 34^{\prime}$ is $10000024 \cdot 5$ metres

The corrections to the latitudes of the 40 Astronomical Stations computed from the above values of $u v w z$ are as in the following Table:-

Staions.	Corrections.	Stations.	Corrections.
	"		"
Formentera	+2.7389	Staro Nekrassowka	-3.3105
Montjouy.	+2.6977	Wodolui.	+0.9985
Barcelona	-0.6549	Ssuprunkowzi	$+2.6272$
Carcassonne	-2.1257	Kremenetz.	-2:0883
Pantheon.	-2.7193	Belin	+0.3709
Dunkirk	-1.1360	Nemesch	+0.1297
Greenwich.	+0.9353	Jacobstadt	$+2 \cdot 6062$
Arbury	+ I•3976	Dorpat.............	-1.1557
Clifton	$-2 \cdot 1881$	Hogland. .	-0.1535
Kellie Law	-0.6546	Kilpi-maki	- 1.1397
Stirling	-0.2.395	Tornen.	+3.7599
Saxavord.	+ $1 \cdot 9489$	Stour-oivi	- $1.914{ }^{2}$
		Fuglen@s.	-0.7310
Puinnc.	-0.345+		
Putchapolliam.	$-1 \cdot 3484$	North End	-1.3127
Dodagoontah	+3.8740	Heereulogement Berg	-0.0393
Namthabad	-2.0812	Royal Observatory ..	-0.3123
Daumergida	-0.3676	Zwart Kop	+1.3856
Takal Khera	+2.1190	Cape Point	+0.2789
Kulianpur	-3.6854	Tarqui............ .	+0.2818
Kaliana	+ 1.83 .51	Cotchesqui	-0.2818

The sum of the squares of these corrections is $138 \cdot 3020$: hence the probable error of a single latitude determination is

$$
\pm 0.674 \sqrt{\frac{13^{8.3020}}{40-9}}= \pm 1.423
$$

Spheroid of Revolution.

If in the first two of the equations (3) we made $w=0, z=0$, the values of u and v reaulting from those two equations would determine the Spheroid of Revolution best representing the geodetic measurements. In this case we get

$$
\begin{aligned}
& 0=u+0.0077151 \mathrm{~A}+0.0055773 \mathrm{~B} \\
& 0=v+0.0055773 \mathrm{~A}+0.0093270 \mathrm{~B}
\end{aligned}
$$

or,

$$
\begin{aligned}
& u=+0.18_{172} \\
& v=+0.061_{77}
\end{aligned}
$$

And from these values there result

In this figure, however, the sum of the squares of the latitude corrections is 153.9939 agningt $138 \cdot 3020$ in the figure of three unequal axes.

LONDON:

I'tinted by George E. Efte and William Spottiswoode, I'rinters to the Queen's most Excellent Majesty. For Her Majesty's Stationery Office.
[2947-750-6/66.]

S.uncompor 2.2.34.04

Ry. 2.

Fig. 4.

[^0]: * Encyclopadia Metropolitana. Art. Figure ol' the Earth.
 \dagger Account of the Principnl Triaugulation, pp. 733-778.

[^1]: * "Extension of the Triangulation of the Ordnance Survey into France and Belgium." London, 1 stia.

[^2]: * Further observations on the length of \boldsymbol{T}_{0} will be found at parge 139.

[^3]: * "Compto rendu des Opérations de lu Commissiou instituéo par M. lo Miuistre do la Guerre, pour étalonner les règles, \&c." Bruxelles, 1855.

[^4]: * If we were certain that at all times the temperature of a bar is uniformly distributed over its whole length, one thermometer, if faultless, would be as good as three or four, or any larger number, nor would it matter at what point in the bar's length the temperature is so recorded. But, if wo suppose that the tomperature is liable to a gradual or uniform change from tho one end of the bar to the other, we should feel constrained to place the one thermometer in the centre of the bar's length. If, with the same supposition as to the law of distribution of temperature, we had two thermometers, it would obviously suffice that they were equidistant from the extremities of the bar, and it would not matter whether they were either close to the two ends or close to the centre of the bar': in either case the mean of their indications would be the mean temperature of the bar, and would enable us to ascertain its length on the further supposition that every element Δx of the bar's length was expanded in precise accordance with its temperature. But suppose, as is more reasonable, that the temperature does not increase or diminish uniformly from one end to tho other, but is expressed by such a law as $t=a_{0}+a_{1} x+a_{9} x^{\circ}$, where a_{a} is probnbly n very sinall quantity, and x is the distance of any point from the centre of the bar. Then the mean temperature of the bar is -

[^5]: points at which the bur should be supported. Unfortunate, because the holes cut into the bar to admit tho bulbs weaken the bar, whilst the greatest strain on the bar is just over the rollers. If there be four thermomoters which we intend to place in the bar at equal distances, wo shall find that in order to give the mean temperature of the bar, the thermometers should be placed so as to coincide with the points at which a bar carried on four rollers should, according to theory, be supported (see page 28). This, however, only reminds us that the theory which does not consider these cuttings is imperfect.

 If there be three thermometers, one at the centre of the bar and the other two at distances $\pm i$ from the centre, then supposing still $\ell=a_{0}+a_{1} x+a_{2} x^{2}$, the mean of their three indications is-

[^6]: * The horizontal position of the thermometers when being boiled was adopted at the suggestion of Lieut.Colonel Walker, Royal Engincere, Superintendent of the Great Trigonometrical Survey of India.

[^7]: Mem 'Temperature 62' 52.

[^8]: * "Nous avions emporté avec nous, en 1730 , une règle de fer poli, de dix-sept lignes de largeur sur quatre " lignes et demie d'épaisseur. M. Godin, aidé d'un artiste habile, aroit mis toute son attention a ajuster
 " la longueur de cette règle sur celle de la Toise étalon, qui a été fixce en 1668 au pied de l'escalier du grand
 "Cbâtelet do Paris. Je prévis quo cet ancien étalon, fait assez grossièrement, et d’ailleurs exposé aux
 " chocs, anx injures de l'air, à la rouille, au contact de toutes les mesures qui y sont présentées, et à la
 " malignité de tout mal-intentionnć, ne seroit guère propre à vérifier dans la suite la 'roise qui alloit servir à la
 " mesure de la Terre, et devenir l'origiaal auquel les autres devoient être comparées. Il me parut donc
 " très-nécessaire en emportant une Toise bien vérifíe, d'en laisser à Paris une autre de même matière et de
 " même forme, à laquelle on put avoir recours s'il arrivoit quelqu'uccident à la nôtre pendant un si long voyage.
 "Je me chargeai d'office du soin d'en faire faire une toute pareille. Cette seconde Toise fut construite par le
 " même ouvrier, et avec les mêmos précautions que la première. Les deux Toises furent comparées ensemble
 "dans une de nos assemblées, et l'une des deux resta en dépôt à l'Académic; c'est lu même qui a été depuis
 "portée en Lapponie par M. de Maupertuis, et qui a été employéo à toutes les opérations des Académiciens
 " envoyós au cercle polaire le dogré 13 au dessus de 0 ; et c’est précisément
 "celui que le thermometre de M. de Reaumur marquoit it laris en 1735, lorsquo notre Toise de fer fut
 "étalonnée sur celle du Châtelet par M. Godiu.-Mesure des Trois premiers Degrés dé Méridien dans l'Hémi-
 "sphere Austral, par M. de la Condamine; à Paris, 1751, pp. 75, 85.
 "La Coiso du Pérou et celle du nord ou du cercle polaire sont pareilles entre elles. Ce sont des règlee plates
 "de fer poli, dont la largeur totale est de 17 à 18 lignes, et l'épaisseur de 4 lignes environ; leur longueur d'un
 " cóté est de 2 pouces à peu près de plus de 6 pieds; elles sont coupées à chaque bout sur une largeur de 8 a 9
 " lị̛nes, et c'est la distance entre les vives arêtes de ces entailles qui a été prise pour la longueur de la toise:
 " les deux talons excédant d'environ un pouce à chaque extrémité, servent i garantir les arêtes des entailles de
 " tout choc. Cés deux toises ont été faites en 1735 par Langlois ; celle du Pérou,
 * sous la dircetion de Godin; la seconde, sous la direction de Lacondamine, qui avoit alors le dessein de la laisser'
 "en dépút à l'Académie, pour avoir un modèle de celle qu'on emportoit au Pérou, et y avoir recours en cas qu’il
 " arrivât quelque uccident ì ln première."—Base du Système Métrique Décimal; tome troisième, p. 405.

[^9]: * "Nous avons troupé par cetto méthode et par des calculs toujours faits par différens calculateurs, que la " comparaison de l'are intercepté entre Dunkerque et Montjouy, et l'are mesuré au Pérou, donne pour l'apla" tissement de la terre $\mathrm{j}^{\frac{1}{3}}$. D'aprés cette donnée nous avons calculé et toujours " par différentes méthodes le quart du méridien en employant l'are intercepté entre Dunkerque et Montjouy, "et il en résulte que le quart du méridien est de 5130740 demi-modules ou de 25653% modules, quantité dont " la dix millionième partie est 0.513074 demi-modules ou 0.256537 modulos. Nous sommes donc d'avis, et roila " en deux mots le résumé de tout notre travail, que, pour tirer de l'opération qui vient d'être faite en Frauce et " on Espagne, le résultnt le plus naturel et le plus vrai pour l'unité de mesure, il conviendra d'établir cette unité " nommée mètre, et qui est lia dix millionième partie du quart du méridien, de o. 25653 \} module; ce qui puisque " le module est, comme nous l'avons dit au commencement de ce mémoire, la doublo toise, revient, selon les " anciennes mesures, à 3 pieds $11.2 g^{\prime}$ lignes, en employunt la toiso du Pćrou, à 13 degrés du thermomètre à " mercure divisé en 8 o parties."
 " La Commission, en suivant l'esprit du système métrique proposé par l'Académic et adopté par la lui, a choisi " la température de la glace fondante, ou ce que nous nommons le zéro de nos thermomèlres; température con" stante. C"est done à ectte température que l'étrlon de platine a été lendu égal à $443^{i} 296$ de la toiso du "Pérou, cette toise étant supposée ̀̀ $16 \mathfrak{4}^{\circ}$, comme il a été dit ci-dessus."-Base du Système Méerrique Décimal, Tom. iii., pp. 432, 433, 642.

[^10]: * Memoirs of the Royal Astronomical Society, vol. sxix, page 30.

